Skip to main content

Bioinformatics for Human Microbiome

  • Chapter
  • First Online:
Advances in Bioinformatics

Abstract

The dynamics of human metabolism and physiology is governed by the complex microbial communities present in different body sites. Advances in sequencing technologies and computational methods have boosted the microbiome analysis towards better resolution. Presently, microbiome research field has bloomed with generation of massive datasets and development of huge number of analysis tools. However, the complexity of the workflows and diversity of the tools in the repertoires make the field difficult. In this chapter we systematically discuss the metataxonomics, metagenomics and metatranscriptomics approaches, pipelines and the recommended tools. Further, the state-of-the-art downstream analysis techniques and visualisation tools were discussed. This chapter will help the researchers in computational analysis considering their biological questions related to human microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afgan E et al (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afiahayati KS, Sakakibara Y (2015) MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning. DNA Res 22(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Amir A et al (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2:2

    Article  Google Scholar 

  • Asnicar F et al (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3:e1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Asshauer KP et al (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31(17):2882–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baksi KD, Kuntal BK, Mande SS (2018) TIME': a web application for obtaining insights into microbial ecology using longitudinal Microbiome data. Front Microbiol 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Balvociute M, Huson DH (2017) SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare? BMC Genomics 18(Suppl 2):114

    Article  PubMed  PubMed Central  Google Scholar 

  • Batut B et al (2018) ASaiM: a galaxy-based framework to analyze microbiota data. Gigascience 7(6):057

    Article  Google Scholar 

  • Bay L et al (2020) Universal dermal microbiome in human skin. MBio 11(1):02945

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolyen E et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers RM et al (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35(8):725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantor M et al (2015) Elviz - exploration of metagenome assemblies with an interactive visualization tool. BMC Bioinformatics 16:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG et al (2011) Moving pictures of the human microbiome. Genome Biol 12(5):R50

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124(8):3391–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IA et al (2019) IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47(D1):D666–D677

    Article  CAS  PubMed  Google Scholar 

  • Cole JR et al (2014) Ribosomal database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  CAS  PubMed  Google Scholar 

  • Compeau PE, Pevzner PA, Tesler G (2011) How to apply de Bruijn graphs to genome assembly. Nat Biotechnol 29(11):987–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costea PI et al (2017) Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 35(11):1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Costello EK et al (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das B et al (2018) Analysis of the gut Microbiome of rural and urban healthy Indians living in sea level and high altitude areas. Sci Rep 8(1):10104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeSantis TZ et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas GM, Beiko RG, Langille MGI (2018) Predicting the functional potential of the Microbiome from marker genes using PICRUSt. Methods Mol Biol 1849:169–177

    Article  CAS  PubMed  Google Scholar 

  • Durack J et al (2018) Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by lactobacillus supplementation. Nat Commun 9(1):707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eddy SR (2008) A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol 4(5):e1000069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  • El-Gebali S et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432

    Article  CAS  PubMed  Google Scholar 

  • Enaud R et al (2020) The gut-lung Axis in health and respiratory diseases: a place for inter-organ and inter-kingdom Crosstalks. Front Cell Infect Microbiol 10:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eren AM et al (2015) Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3:e1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewels P et al (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field D et al (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26(5):541–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzosa EA et al (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 15(11):962–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin MY et al (2019) Microbial genome analysis: the COG approach. Brief Bioinform 20(4):1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A et al (2018) Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods 15(10):796–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregor I et al (2016) PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. Peer J 4:e1603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grice EA et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haft DH et al (2013) TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41:D387–D395

    Article  CAS  PubMed  Google Scholar 

  • Himel Mallick, LJM, Rahnavard A, Ma S, Zhang Y, Nguyen LH, Tickle TL, Weingart G, Ren B, Schwager E, Subramanian A, Lu Y, Waldron L, Paulson JN, Franzosa EA, Bravo HC, Huttenhower C (2021) Multivariable association in population-scale meta-omics studies

    Google Scholar 

  • Holly M Bik PI (2014) Phinch: an interactive, exploratory data visualization framework for–Omic datasets. In: bioRxiv

    Google Scholar 

  • Huerta-Cepas J et al (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:309–314

    Article  CAS  Google Scholar 

  • Huey SL et al (2020) Nutrition and the gut microbiota in 10- to 18-month-old children living in urban slums of Mumbai, India. mSphere 5:5

    Article  Google Scholar 

  • Human Microbiome Project (2012a) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  CAS  Google Scholar 

  • Human Microbiome Project (2012b) A framework for human microbiome research. Nature 486(7402):215–221

    Article  CAS  Google Scholar 

  • Hyatt D et al (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28(17):2223–2230

    Article  CAS  PubMed  Google Scholar 

  • Kaminski J et al (2015) High-specificity targeted functional profiling in microbial communities with ShortBRED. PLoS Comput Biol 11(12):e1004557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    Article  CAS  PubMed  Google Scholar 

  • Kang DD et al (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang DD et al (2019) MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlsson F et al (2013) Assessing the human gut microbiota in metabolic diseases. Diabetes 62(10):3341–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keegan KP, Glass EM, Meyer F (2016) MG-RAST, a metagenomics Service for Analysis of microbial community structure and function. Methods Mol Biol 1399:207–233

    Article  CAS  PubMed  Google Scholar 

  • Knights D et al (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8(9):761–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama Y et al (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40:D54–D56

    Article  CAS  PubMed  Google Scholar 

  • Kopylova E, Noe L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24):3211–3217

    Article  CAS  PubMed  Google Scholar 

  • Kostic AD et al (2012) Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res 22(2):292–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsandreas T et al (2019) ANASTASIA: an automated metagenomic analysis pipeline for novel enzyme discovery exploiting next generation sequencing data. Front Genet 10:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laczny CC et al (2015) VizBin—an application for reference-independent visualization and human-augmented binning of metagenomic data. Microbiome 3(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D et al (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10):1674–1676

    Article  CAS  PubMed  Google Scholar 

  • Ma A et al (2019) MetaQUBIC: a computational pipeline for gene-level functional profiling of metagenome and metatranscriptome. Bioinformatics 35(24):5397

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarville JL, Caminero A, Verdu EF (2016) Novel perspectives on therapeutic modulation of the gut microbiota. Therap Adv Gastroenterol 9(4):580–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes RS et al (2020) Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr Opin Microbiol 53:35–43

    Article  CAS  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally CP et al (2018) BURRITO: an interactive multi-omic tool for visualizing taxa-function relationships in Microbiome data. Front Microbiol 9:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta RS et al (2018) Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol 3(3):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer F et al (2019) MG-RAST version 4-lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis. Brief Bioinform 20(4):1151–1159

    Article  PubMed  Google Scholar 

  • Mikheenko A, Saveliev V, Gurevich A (2016) MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32(7):1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AL et al (2020) MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res 48(D1):D570–D578

    CAS  PubMed  Google Scholar 

  • Morton JT et al (2017) Balance trees reveal microbial niche differentiation. mSystems 2:1

    Article  Google Scholar 

  • Morton JT et al (2019) Learning representations of microbe-metabolite interactions. Nat Methods 16(12):1306–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namiki T et al (2012) MetaVelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40(20):e155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayfach S et al (2019) New insights from uncultivated genomes of the global human gut microbiome. Nature 568(7753):505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson RH et al (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259–D264

    Article  CAS  PubMed  Google Scholar 

  • Nishijima S et al (2016) The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res 23(2):125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurk S et al (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27(5):824–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh M, Zhang L (2020) DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci Rep 10(1):6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12:385

    Article  PubMed  PubMed Central  Google Scholar 

  • Ounit R et al (2015) CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Overbeek R et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:206–214

    Article  CAS  Google Scholar 

  • Parks DH et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasolli E et al (2019) Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176(3):649–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y et al (2011) Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics 27(13):94–101

    Article  CAS  Google Scholar 

  • Peng Y et al (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Qian X et al (2020) Gut microbiota in children with juvenile idiopathic arthritis: characteristics, biomarker identification, and usefulness in clinical prediction. BMC Genomics 21(1):286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Y et al (2018) MetaBinG2: a fast and accurate metagenomic sequence classification system for samples with many unknown organisms. Biol Direct 13(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  CAS  Google Scholar 

  • Rajilic-Stojanovic M et al (2012) Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol 10:15

    Google Scholar 

  • Relman DA, Lipsitch M (2018) Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proc Natl Acad Sci USA 115(51):12902–12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 38(20):e191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ritchie ML, Romanuk TN (2012) A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One 7(4):e34938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson RC et al (2019) The Human Microbiome and child growth—first 1000 days and beyond. Trends Microbiol 27(2):131–147

    Article  CAS  PubMed  Google Scholar 

  • Rognes T et al (2016) VSEARCH: a versatile open source tool for metagenomics. Peer J 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  PubMed  Google Scholar 

  • Roux S et al (2019) Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol 37(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD (2020) Reintroducing mothur: 10 years later. Appl Environ Microbiol 86(2):e02343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL et al (2020) NCBI taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford) 2020:062

    Article  CAS  Google Scholar 

  • Segata N et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    Article  PubMed  PubMed Central  Google Scholar 

  • Segata N et al (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9(8):811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 1962:227–245

    Article  CAS  PubMed  Google Scholar 

  • Shi W et al (2019) gcMeta: a Global Catalogue of Metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res 47(1):637–648

    Article  CAS  Google Scholar 

  • Sinha R et al (2017) Assessment of variation in microbial community amplicon sequencing by the Microbiome quality control (MBQC) project consortium. Nat Biotechnol 35(11):1077–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer F et al (2017) The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 15(10):630–638

    Article  CAS  PubMed  Google Scholar 

  • Song W et al (2019) MetaCHIP: community-level horizontal gene transfer identification through the combination of best-match and phylogenetic approaches. Microbiome 7(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Stennett CA et al (2020) A cross-sectional pilot study of birth mode and vaginal microbiota in reproductive-age women. PLoS One 15(4):0228574

    Article  CAS  Google Scholar 

  • Subramanian S et al (2014) Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510(7505):417–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J et al (2020a) Role of the oral microbiota in cancer evolution and progression. Cancer Med 9:6306–6321

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y et al (2020b) Population-level configurations of gut mycobiome across six ethnicities in urban and rural China. Gastroenterology 6:31–38

    Google Scholar 

  • Susic D et al (2020) Microbiome Understanding in Maternity Study (MUMS), an Australian prospective longitudinal cohort study of maternal and infant microbiota: study protocol. BMJ Open 10(9):e040189

    PubMed  PubMed Central  Google Scholar 

  • Tamames J, Puente-Sanchez F (2018) SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front Microbiol 9:3349

    Article  PubMed  Google Scholar 

  • Tamburini S et al (2016) The microbiome in early life: implications for health outcomes. Nat Med 22(7):713–722

    Article  CAS  PubMed  Google Scholar 

  • Thang MWC et al (2019) MetaDEGalaxy: galaxy workflow for differential abundance analysis of 16s metagenomic data. F1000Res 8:726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Integrative HMP (iHMP) Research Network Consortium (2019) The Integrative Human Microbiome Project. Nature 569(7758):641–648

    Article  CAS  Google Scholar 

  • Tigchelaar EF et al (2015) Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5(8):e006772

    Article  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ et al (2013) MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol 14(1):R2

    Article  PubMed  PubMed Central  Google Scholar 

  • Truong DT et al (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12(10):902–903

    Article  CAS  PubMed  Google Scholar 

  • UniProt C (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  CAS  Google Scholar 

  • Valles-Colomer M et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4(4):623–632

    Article  CAS  PubMed  Google Scholar 

  • Vangay P, Hillmann BM, Knights D (2019) Microbiome learning repo (ML repo): a public repository of microbiome regression and classification tasks. Gigascience 8:5

    Article  Google Scholar 

  • Vetizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westreich ST et al (2018) SAMSA2: a standalone metatranscriptome analysis pipeline. BMC Bioinformatics 19(1):175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15(3):46

    Article  Google Scholar 

  • Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28(7):1033–1034

    Article  CAS  PubMed  Google Scholar 

  • Wu YW et al (2014) MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YW, Simmons BA, Singer SW (2016) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32(4):605–607

    Article  CAS  PubMed  Google Scholar 

  • Yang Z et al (2016) Preliminary analysis showed country-specific gut resistome based on 1,267 feces samples. Gene 581(2):178–182

    Article  CAS  PubMed  Google Scholar 

  • Yatsunenko T et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz P et al (2011) Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29(5):415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2020) Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection. Microbiome 8(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):e132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmermann M et al (2019) Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363(6427):9931

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, A., Firdous, S., Saha, S. (2021). Bioinformatics for Human Microbiome. In: Singh, V., Kumar, A. (eds) Advances in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-33-6191-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6191-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6190-4

  • Online ISBN: 978-981-33-6191-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics