Skip to main content

Inorganic Nanomaterials in Edible Food Packaging

  • Chapter
  • First Online:
Nanotechnology in Edible Food Packaging

Abstract

In this chapter, a discussion on the use of various inorganic nanoparticles such as silver nanoparticles, titanium dioxide, silicon dioxide, zinc oxide, iron oxides, and others is made with relevant application in edible food packaging. Further, the effectiveness of inorganic nanoparticles in preventing foodborne diseases is also discussed, where the inorganic nanoparticles can release biocide into food products. The inorganic nanomaterials are used in addition to polymer composites to improve the efficiency of the packaging materials in terms of fortified food products and nutraceutical-added food products. Further, these inorganic nanoparticles also increase the functional properties of edible bionanocomposite films. The chapter is also focused to discuss the updated knowledge in recent research on edible nanocomposites-based packaging with multiple inorganic nanofillers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. Persin Z, Stana-Kleinschek K, Foster TJ, van Dam JEG, Boeriu CG, Navard P (2011) Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr Polym 84(1):22e32. http://dx.doi.org/10.1016/j.carbpol.2010.11.044

  2. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT-Food Sci Technol 43(6):837e842. http://dx.doi.org/10.1016/j.lwt.2010.01.021

  3. Kim KM, Son JH, Kim SK, Weller CL, Hanna MA (2006) Properties of chitosan films as a function of pH and solvent type. J Food Sci 71(3):E119eE124. http://dx.doi.org/10.1111/j.1365-21.2006.tb15624.x

  4. Ren P-G, Wang H, Yan D-X, Huang H-D, Wang H-B, Zhang Z-P, Xu L, Li Z-M (2017) Ultrahigh gas barrier poly(vinyl alcohol) nanocomposite film filled with congregated and oriented Fe3O4@GO sheets induced by magnetic-field. Compos Part A-Appl Sci Manuf 97:1–9

    Article  CAS  Google Scholar 

  5. Shariatinia Z, Fazli M (2015) Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocoll 46:112–124

    Article  CAS  Google Scholar 

  6. Mihindukulasuriya SDF, Lim L-T (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Tech 40:149–167

    Article  CAS  Google Scholar 

  7. Islam MS, Yeum JH (2013) Electrospun pullulan/poly(vinyl alcohol)/silver hybrid nanofibers: preparation and property characterization for antibacterial activity. Colloid Surf A Physicochem Eng Asp 436:279–286

    Article  CAS  Google Scholar 

  8. Plaza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116

    Article  Google Scholar 

  9. Kadam D, Momin B, Palamthodi S, Lele SS (2019) Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles. Carbohydr Polym 211:124–132

    Article  CAS  Google Scholar 

  10. Nair SB, Alummoottil N, Moothandasserry SS (2017) Chitosan-konjac glucomannan-cassava starch-nanosilver composite films with moisture resistant and antimicrobial properties for food-packaging applications. Starch 69:1600210

    Article  Google Scholar 

  11. George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292

    Article  CAS  Google Scholar 

  12. Roy S, Shankar S, Rhim J-W (2019) Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocoll 88:237–246

    Article  CAS  Google Scholar 

  13. Ortega F, Giannuzzi L, Arce VB, García MA (2017) Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll 70:152–162

    Article  CAS  Google Scholar 

  14. Ji N, Liu C, Zhang S, Xiong L, Sun Q (2016) Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT-Food Sci Technol 74:311–318

    Article  CAS  Google Scholar 

  15. Bahrami A, Mokarram RR, Khiabani MS, Ghanbarzadeh B, Salehi R (2019) Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. Int J Biol Macromol 129:1103–1112

    Article  CAS  Google Scholar 

  16. Orsuwan A, Shankar S, Wang L-F, Sothornvit R, Rhim J-W (2016) Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocoll 60:476–485

    Article  CAS  Google Scholar 

  17. Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169

    Article  CAS  Google Scholar 

  18. De Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524

    Article  Google Scholar 

  19. Kurhade Ankeeta, Patil Sonal, Sonawane Sachin K, Waghmare Jyotsna S, Arya Shalini S (2016) Effect of banana peel powder on bioactive constituents and microstructural quality of chapatti: unleavened Indian flat bread. J Food Meas Charact 10(1):32–41

    Article  Google Scholar 

  20. Abreu AS, Oliveira M, de Sa A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV (2015) Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym 129:127–134

    Google Scholar 

  21. Shankar S, Tanomrod N, Rawdkuen S, Rhim J-W (2016) Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol 92:842–849

    Article  CAS  Google Scholar 

  22. Zhang R, Wang X, Cheng M (2018) Preparation and characterization of potato starch film with various size of nano-SiO2. Polymers 10(10):1172

    Article  Google Scholar 

  23. Swaroop C, Shukla M (2018) Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol 113:729–736

    Article  CAS  Google Scholar 

  24. Sanuja S, Agalya A, Umapathy MJ (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mat Polym Biomater 63(14):733–740

    Article  CAS  Google Scholar 

  25. Bakhy EA, Zidan NS, Aboul-Anean HED (2018) The effect of nano materials on edible coating and films’ improvement. Int J Pharm Res Allied Sci 7(3):20–41

    Google Scholar 

  26. Meng X, Zhang M, Adhikari B (2014) The effects of ultrasound treatment and nano-zinc oxide coating on the physiological activities of fresh-cut kiwifruit. Food Bioprocess Technol 7(1):126–132

    Article  CAS  Google Scholar 

  27. Zambrano-Zaragoza ML, González-Reza R, Mendoza-Muñoz N, Miranda-Linares V, Bernal-Couoh TF, Mendoza-Elvira S, Quintanar-Guerrero D (2018) Nanosystems in edible coatings: a novel strategy for food preservation. Int J Mol Sci 19(3):705

    Article  Google Scholar 

  28. Gautam RB, Kumar S (2017) Development of protein based films with nanoparticle as strengthening material for biodegradable packaging—a review. Int J Agri Innov Res 5(5):791–805

    Google Scholar 

  29. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868

    Article  CAS  Google Scholar 

  30. Scuderi V, Buccheri MA, Impellizzeri G, Di Mauro A, Rappazzo G, Bergum K, Privitera V (2016) Photocatalytic and antibacterial properties of titanium dioxide flat film. Mater Sci Semicond Process 42:32–35

    Article  CAS  Google Scholar 

  31. Dash KK, Ali NA, Das D, Mohanta D (2019) Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int J Biol Macromol 139:449–458. https://doi.org/10.1016/j.ijbiomac.2019.07.193

    Article  CAS  Google Scholar 

  32. Li Y, Jiang Y, Liu F, Ren F, Zhao G, Leng X (2011) Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids 25:1098–1104. https://doi.org/10.1016/j.foodhyd.2010.10.006

    Article  CAS  Google Scholar 

  33. Li W, Zheng K, Chen H, Feng S, Wang W, Qin C (2019) Influence of nano titanium dioxide and clove oil on chitosan–starch film characteristics. Polymers 11(9):1418. https://doi.org/10.3390/polym11091418

    Article  CAS  Google Scholar 

  34. Sani MA, Ehsani A, Hashemi M (2017) Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int J Food Microbiol 251:8–14

    Article  Google Scholar 

  35. Malathi AN, Kumar N, Nidoni U, Hiregoudar S (2017) Development of soy protein isolate films reinforced with titanium dioxide nanoparticles. Int J Agri Environ Biotechnol 10(1):141–148. https://doi.org/10.5958/2230-732x.2017.00014.6

    Article  Google Scholar 

  36. Bajpai SK, Chand N, Chaurasia V (2010) Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles-loaded chitosan-based edible film. J Appl Polym Sci 115(2):674–683

    Article  CAS  Google Scholar 

  37. Akbar A, Anal AK (2014) Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95

    Article  CAS  Google Scholar 

  38. Iuliani S, Wardana AA, Meindrawan B, Edhi N, Muchtadi TR (2018) Nanocomposite edible coating from cassava starch, stearic acid and ZnO nanoparticles to maintain quality of fresh-cut mango cv. Arumanis. Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology 42(2):49–58

    Google Scholar 

  39. Divsalar E, Tajik H, Moradi M, Forough M, Lotfi M, Kuswandi B (2018) Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. Int J Biol Macromol 109:1311–1318

    Article  CAS  Google Scholar 

  40. Lakshmi SJ, Roopa Bai RS, Sharanagouda H, Ramachandra CT, Nadagouda S, Nidoni U (2018) Effect of biosynthesized zinc oxide nanoparticles coating on quality parameters of fig (Ficus carica L.) fruit. J Pharmacognosy Phytochem 7(3):10–14

    Google Scholar 

  41. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290

    Article  CAS  Google Scholar 

  42. Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19(3):311–317

    Article  Google Scholar 

  43. Marchiore NG, Manso IJ, Kaufmann KC, Lemes GF, de Oliveira Pizolli AP, Droval AA, Bracht L, Goncalves OH, Leimann FV (2017) Migration evaluation of silver nanoparticles from antimicrobial edible coating to sausages. LWT-Food Sci Technol 76:203–208. https://doi.org/10.1016/j.lwt.2016.06.013

    Article  CAS  Google Scholar 

  44. Ragunathan R, Kumar RR, Tamilenthi A, Johney J (2015) Green synthesis of chitosan silver nanocomposites, its medical and edible coating on fruits and vegetables. Int J Biol Pharm Res 6:129–136

    Google Scholar 

  45. Jiang T, Feng L, Wang Y (2013) Effect of alginate/nano-Ag coating on microbial and physicochemical characteristics of shiitake mushroom (Lentinus edodes) during cold storage. Food Chem 141(2):954–960

    Article  CAS  Google Scholar 

  46. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Sci Technol 41(6):1100–1107

    Article  CAS  Google Scholar 

  47. Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57(14):6246–6252

    Article  CAS  Google Scholar 

  48. Ghosh T, Teramoto Y, Katiyar V (2019) Influence of nontoxic magnetic cellulose nanofibers on chitosan based edible nanocoating: a candidate for improved mechanical, thermal, optical, and texture properties. J Agric Food Chem 67(15):4289–4299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagabati, P., Ghosh, T., Katiyar, V. (2021). Inorganic Nanomaterials in Edible Food Packaging. In: Nanotechnology in Edible Food Packaging. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6169-0_8

Download citation

Publish with us

Policies and ethics