Skip to main content

Carbon Nanomaterials for Biomedical Application

  • 871 Accesses

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1309)

Abstract

The use of carbon-based nanomaterials (CNs) with outstanding properties has been rising in many scientific and industrial application fields. These CNs represent a tunable alternative for applications with biomolecules, which allow interactions in either covalent or noncovalent way. Diverse carbon-derived nanomaterial family exhibits unique features and has been widely exploited in various biomedical applications, including biosensing, diagnosis, cancer therapy, drug delivery, and tissue engineering. In this chapter, we aim to present an overview of CNs with a particular interest in intrinsic structural, electronic, and chemical properties. In particular, the detailed properties and features of CNs and its derivatives, including carbon nanotube (CNT), graphene, graphene oxide (GO), and reduced GO (rGO) are summarized. The interesting biomedical applications are also reviewed in order to offer an overview of the possible fields for scientific and industrial applications of CNs.

Keywords

  • Carbon nanomaterial
  • Carbon nanotube
  • Graphene
  • Graphene oxide
  • Reduced graphene oxide
  • Surface functionalization

Co-corresponding authors: Seung Hwan Lee and Bong-Hyun Jun.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-33-6158-4_11
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-33-6158-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8

References

  • Ahn SR, An JH, Song HS, Park JW, Lee SH, Kim JH, Jang J, Park TH (2016) Duplex bioelectronic tongue for sensing umami and sweet tastes based on human taste receptor nanovesicles. ACS Nano 10:7287–7296

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahn SR, An JH, Jang IH, Na W, Yang HH, Cho KH, Lee SH, Song HS, Jang J, Park TH (2018) High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosens Bioelectron 117:628–636

    CAS  PubMed  CrossRef  Google Scholar 

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    CAS  PubMed  CrossRef  Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    CAS  PubMed  CrossRef  Google Scholar 

  • Amieva EJC, López-Barroso J, Martínez-Hernández AL, Velasco-Santos C (2016) Graphene-based materials functionalization with natural polymeric biomolecules. InTech, Rijeka

    Google Scholar 

  • An X, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295–4301

    CAS  PubMed  CrossRef  Google Scholar 

  • Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1:17–21

    CrossRef  Google Scholar 

  • Andronescu C, Schuhmann W (2017) Graphene-based field effect transistors as biosensors. Curr Opin Electrochem 3(1):11–17

    CAS  CrossRef  Google Scholar 

  • Baek A, Baek YM, Kim HM, Jun BH, Kim DE (2018) Polyethylene glycol-engrafted graphene oxide as biocompatible materials for peptide nucleic acid delivery into cells. Bioconjug Chem 29(2):528–537. https://doi.org/10.1021/acs.bioconjchem.8b00025

    CAS  CrossRef  PubMed  Google Scholar 

  • Baughman RH, Zakhidov AA, Heer WAD (2002) Carbon nanotubes: the route toward applications. Science 297:787–792

    CAS  PubMed  CrossRef  Google Scholar 

  • Bei HP, Yang Y, Zhang Q, Tian Y, Luo X, Yang M, Zhao X (2019) Graphene-based nanocomposites for neural tissue engineering. Molecules 24:658

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Besteman K, Lee J-O, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3:727–730

    CAS  CrossRef  Google Scholar 

  • Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    CAS  PubMed  CrossRef  Google Scholar 

  • Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4:2911

    CAS  CrossRef  Google Scholar 

  • Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Mater 25:2258–2268

    CAS  PubMed  CrossRef  Google Scholar 

  • Chang JH, Cheong JY, Kim SJ, Shim Y-S, Park JY, Seo HK, Dae KS, Lee C-W, Kim I-D, Yuk JM (2019) Graphene liquid cell Electron microscopy of initial lithiation in Co3O4 nanoparticles. ACS Omega 4:6784–6788

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen G-Y, Panga W-P, Hwang S-M, Tuan H-Y, Hu Y-C (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33:418–427

    PubMed  CrossRef  CAS  Google Scholar 

  • Chen Q, Smith JM, Park J, Kim K, Ho D, Rasool HI, Zettl A, Alivisatos AP (2013) 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett 13:4556–4561

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen Y-W, Sub Y-L, Hu S-H, Chen S-Y (2016) Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev 105:190–204

    CAS  PubMed  CrossRef  Google Scholar 

  • Cheong JY, Chang JH, Seo HK, Yuk JM, Shin JW, Lee JY, Kim I-D (2016) Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy. Nano Energy 25:154–160

    CAS  CrossRef  Google Scholar 

  • Cho H, Jones MR, Nguyen SC, Hauwiller MR, Zettl A, Alivisatos AP (2017) The use of graphene and its derivatives for liquid-phase transmission electron microscopy of radiation-sensitive specimens. Nano Lett 17:414–420

    CAS  PubMed  CrossRef  Google Scholar 

  • Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166

    CAS  PubMed  CrossRef  Google Scholar 

  • Dato A, Lee Z, Jeon K-J, Erni R, Radmilovic V, Richardson TJ, Frenklach M (2009) Clean and highly ordered graphene synthesized in the gas phase. Chem Commun 40:6095–6097

    CrossRef  CAS  Google Scholar 

  • Ding X, Liu H, Fan Y (2015) Graphene-based materials in regenerative medicine. Adv Healthc Mater 4:1451–1468

    CAS  PubMed  CrossRef  Google Scholar 

  • Drndić M (2014) Sequencing with graphene pores. Nat Nanotechnol 9:743

    PubMed  CrossRef  CAS  Google Scholar 

  • Dukes MJ, Thomas R, Damiano J, Klein KL, Balasubramaniam S, Kayandan S, Riffle JS, Davis RM, McDonald SM, Kelly DF (2014) Improved microchip design and application for in situ transmission electron microscopy of macromolecules. Microsc Microanal 20:338–345

    CAS  PubMed  CrossRef  Google Scholar 

  • Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9:393

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Energy 12:3925–3930

    CAS  Google Scholar 

  • Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472

    CAS  PubMed  CrossRef  Google Scholar 

  • Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493

    CAS  CrossRef  Google Scholar 

  • Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432

    CrossRef  CAS  Google Scholar 

  • Gao S, Zhang L, Wang G, Yang K, Chen M, Tian R, Ma Q, Zhu L (2016) Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials 79:36–45

    CAS  PubMed  CrossRef  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  PubMed  CrossRef  Google Scholar 

  • Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza A, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    CAS  PubMed  CrossRef  Google Scholar 

  • Gui EL, Li L-J, Zhang K, Xu Y, Dong X, Ho X, Lee PS, Kasim J, Shen ZX, Rogers JA, Mhaisalkar (2007) DNA sensing by field-effect transistors based on networks of carbon nanotubes. J Am Chem Soc 129(46):14427–14432

    CAS  PubMed  CrossRef  Google Scholar 

  • Hahm E, Jeong D, Cha MG, Choi JM, Pham XH, Kim HM, Kim H, Lee YS, Jeong DH, Jung S, Jun BH (2016) Beta-CD dimer-immobilized Ag assembly embedded silica nanoparticles for sensitive detection of polycyclic aromatic hydrocarbons. Sci Rep 6. https://doi.org/10.1038/srep26082

  • Hahm E, Cha MG, Kang EJ, Pham XH, Lee SH, Kim HM, Kim DE, Lee YS, Jeong DH, Jun BH (2018) Multilayer Ag-embedded silica nanostructure as a surface-enhanced Raman scattering-based chemical sensor with dual-function internal standards. ACS Appl Mater Interfaces 10(47):40748–40755. https://doi.org/10.1021/acsami.8b12640

    CAS  CrossRef  PubMed  Google Scholar 

  • Hauwiller MR, Frechette LB, Jones MR, Ondry JC, Rotskoff GM, Geissler P, Alivisatos AP (2018) Unraveling kinetically-driven mechanisms of gold nanocrystal shape transformations using graphene liquid cell electron microscopy. Nano Lett 18:5731–5737

    CAS  PubMed  CrossRef  Google Scholar 

  • Hecht DS, Ramirez RJA, Briman M, Artukovic E, Chichak KS, Stoddart JF, Grüner G (2006) Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett 6:2031–2036

    CAS  PubMed  CrossRef  Google Scholar 

  • Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859

    CAS  CrossRef  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  CrossRef  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-Shell carbon nanotubes of 1-nm diameter. Nature 3636:603–605

    CrossRef  Google Scholar 

  • Jakus† AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9:4636–4648

    CrossRef  CAS  Google Scholar 

  • Jeon I-Y, Chang DW, Kumar NA, Baek J-B (2011) Functionalization of carbon nanotubes, carbon nanotubes –polymer nanocomposites. InTech, Rijeka

    Google Scholar 

  • Jin HJ, Lee SH, Kim TH, Park J, Song HS, Park TH, Hong S (2012) Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron 35:335–341

    CAS  PubMed  CrossRef  Google Scholar 

  • Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

    CAS  CrossRef  Google Scholar 

  • Juanjuan Z, Ruiyi L, Zaijun L, Junkang L, Zhiguo G, Guangli W (2014) Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene. Nanoscale 6:5458–5466

    PubMed  CrossRef  Google Scholar 

  • Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876

    CAS  PubMed  CrossRef  Google Scholar 

  • Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27

    CAS  CrossRef  Google Scholar 

  • Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21:91–94

    CAS  CrossRef  Google Scholar 

  • Kim HS, Lee SH, Choi I (2019) On-chip plasmonic immunoassay based on targeted assembly of gold nanoplasmonic particles. Analyst 144:2820–2826

    CAS  PubMed  CrossRef  Google Scholar 

  • Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    CAS  CrossRef  Google Scholar 

  • Kwon OS, Lee SH, Park SJ, An JH, Song HS, Kim T, Oh JH, Bae J, Yoon H, Park TH, Jang J (2013) Large-scale graphene micropattern nano-biohybrids: high-performance transducers for FET-type flexible fluidic HIV immunoassays. Adv Mater 25:4177–4185

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee SH, Jun B-H (2019a) Advances in dynamic microphysiological organ-on-a-chip: design principle and its biomedical application. J Ind Eng Chem 71:65–77

    CAS  CrossRef  Google Scholar 

  • Lee SH, Jun B-H (2019b) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20:865

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Lee SH, Park TH (2010) Recent advances in the development of bioelectronic nose. Biotechnol Bioprocess Eng 15:22–29

    CAS  CrossRef  Google Scholar 

  • Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5:7334–7341

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee SH, Jin HJ, Song HS, Hong S, Park TH (2012a) Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J Biotechnol 157:467–472

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012b) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33:1722–1729

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee SH, Sung JH, Park TH (2012c) Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann Biomed Eng 40:1384–1397

    PubMed  CrossRef  Google Scholar 

  • Lee SH, Hong S, Song J, Cho B, Han EJ, Kondapavulur S, Kim D, Lee LP (2018a) Microphysiological analysis platform of pancreatic islet β-cell spheroids. Adv Healthc Mater 7:1701111

    CrossRef  CAS  Google Scholar 

  • Lee SH, Rho W-Y, Park SJ, Kim J, Kwon OS, Jun B-H (2018b) Multifunctional self-assembled monolayers via microcontact printing and degas-driven flow guided patterning. Sci Rep 8:16763

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Lee SH, S-m P, Kim BN, Rho W-Y, Kwon OS, Jun B-H (2019a) Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 141:111448

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee SH, Song J, Cho B, Hong S, Hoxha O, Kang T, Kim D, Lee LP (2019b) Bubble-free rapid microfluidic PCR. Biosens Bioelectron 126:725–733

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee SH, Kim KH, Seo SE, Mi K, Park SJ, Kwon OS (2020) Cytochrome C-decorated graphene field-effect transistor for highly sensitive hydrogen peroxide detection. J Ind Eng Chem 83:29–34

    CAS  CrossRef  Google Scholar 

  • Li H, Zhou B, Lin Y, Gu L, Wang W, Fernando KAS, Kumar S, Allard LF, Sun Y-P (2004) Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc 126:1014–1015

    CAS  PubMed  CrossRef  Google Scholar 

  • Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    CAS  PubMed  CrossRef  Google Scholar 

  • Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, Liu L, Jin G, Tang M, Cheng G (2011) The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32:9374–9382

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2007) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    CrossRef  CAS  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14:316–323

    CAS  CrossRef  Google Scholar 

  • Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    CAS  PubMed  CrossRef  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    CAS  PubMed  CrossRef  Google Scholar 

  • Nam S, Choi I, C-c F, Kim K, Hong S, Choi Y, Zetti A, Lee LP (2014) Graphene nanopore with a self-integrated optical antenna. Nano Lett 14:5584–5589

    CAS  PubMed  CrossRef  Google Scholar 

  • Namgung S, BaiK KY, Park J, Hong S (2011) Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano 5:7383–7390

    CAS  PubMed  CrossRef  Google Scholar 

  • Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    CAS  PubMed  CrossRef  Google Scholar 

  • Park SY, Choi DS, Jin HJ, Park J, Byun K-E, Lee K-B, Hong S (2011a) Polarization-controlled differentiation of human neural stem cells using synergistic cues from the patterns of carbon nanotube monolayer coating. ACS Nano 5:4704–4711

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011b) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23:H263

    CAS  PubMed  CrossRef  Google Scholar 

  • Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12:5082–5090

    CAS  PubMed  CrossRef  Google Scholar 

  • Park JS, Baek A, Park IS, Jun BH, Kim DE (2013) A graphene oxide-based platform for the assay of RNA synthesis by RNA polymerase using a fluorescent peptide nucleic acid probe. Chem Commun 49(80):9203–9205. https://doi.org/10.1039/c3cc45750h

    CAS  CrossRef  Google Scholar 

  • Patterson JP, Proetto MT, Gianneschi NC (2015) Soft nanomaterials analszed by in situ liquid TEM: towards high resolution characterisation of nanoparticles in motion. Perspect Sci 6:106–112

    CrossRef  Google Scholar 

  • Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    CAS  CrossRef  Google Scholar 

  • Pham XH, Hahm E, Kim HM, Shim S, Kim TH, Jeong DH, Lee YS, Jun BH (2016) Silver nanoparticle-embedded thin silica-coated graphene oxide as an SERS substrate. Nanomaterials 6(10). https://doi.org/10.3390/nano6100176

  • Pham XH, Baek A, Kim TH, Lee SH, Rho WY, Chung WJ, Kim DE, Jun BH (2017a) Graphene oxide conjugated magnetic beads for RNA extraction. Chem Asian J 12:1883–1888

    CAS  PubMed  CrossRef  Google Scholar 

  • Pham XH, Lee M, Shim S, Jeong S, Kim HM, Hahm E, Lee SH, Lee YS, Jeong DH, Jun BH (2017b) Highly sensitive and reliable SERS probes based on nanogap control of a Au-Ag alloy on silica nanoparticles. RSC Adv 7(12):7015–7021. https://doi.org/10.1039/c6ra26213a

    CAS  CrossRef  Google Scholar 

  • Pham XH, Hahm E, Kim TH, Kim HM, Lee SH, Lee YS, Jeong DH, Jun BH (2018) Enzyme-catalyzed Ag growth on Au nanoparticle-assembled structure for highly sensitive colorimetric immunoassay. Sci Rep 8. https://doi.org/10.1038/s41598-018-24664-w

  • Pham XH, Hahm E, Kang E, Ha YN, Lee SH, Rho WY, Lee YS, Jeong DH, Jun BH (2019) Gold-silver bimetallic nanoparticles with a Raman labeling chemical assembled on silica nanoparticles as an internal-standard-containing nanoprobe. J Alloys Compd 779:360–366. https://doi.org/10.1016/j.jallcom.2018.11.270

    CAS  CrossRef  Google Scholar 

  • Qi Y, Liu Y, Xia T, Xu A, Liu S, Chen W (2018) The biotransformation of graphene oxide in lung fluids significantly alters its inherent properties and bioactivities toward immune cells. NPG Asia Mater 10:385–396

    CAS  CrossRef  Google Scholar 

  • Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodríguez-González C, Martínez-Hernández AL, Castaño VM, Kharissova OV, Ruoff RS, Velasco-Santos C (2012) Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide. Ind Eng Chem Res 51:3619–3629

    CrossRef  CAS  Google Scholar 

  • Ryoo S-R, Kim Y-K, Kim M-H, Min D-H (2010) Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4:6587–6598

    CAS  PubMed  CrossRef  Google Scholar 

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    CAS  CrossRef  Google Scholar 

  • Sasaki Y, Kitaura R, Yuk JM, Zettl A, Shinohara H (2016) Efficient preparation of graphene liquid cell utilizing direct transfer with large-area well-stitched graphene. Chem Phys Lett 650:107–112

    CAS  CrossRef  Google Scholar 

  • Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26:3673–3680

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Func Mater 19:1987–1992

    CAS  CrossRef  Google Scholar 

  • Song HS, Jin HJ, Ahn SR, Kim D, Lee SH, Kim U-K, Simons CT, Hong S, Park TH (2014) Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance. Nano Lett 8:9781–9789

    CAS  Google Scholar 

  • Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X (2015) Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 9:9199–9209

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff S (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  CrossRef  Google Scholar 

  • Strano MS, Dyke CA, Usrey ML, Baronel PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM, Smalley RE (2003) Electronic structure control of single-walled carbon nanotube functionalization. Science 301:1519–1522

    CAS  PubMed  CrossRef  Google Scholar 

  • Syama S, Mohanan PV (2019) Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett 11:6

    CAS  CrossRef  Google Scholar 

  • Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292:2462–2465

    CAS  PubMed  CrossRef  Google Scholar 

  • Taylor AC, González CH, Ferretti P, Jackman RB (2019) Spontaneous differentiation of human neural stem cells on nanodiamonds. Adv Biosyst 3:1800299

    CAS  CrossRef  Google Scholar 

  • Terrones M, Jorio A, Endo M, Rao AM, Kim YA, Hayashi T, Terrones H, Charlier J-C, Dresselhaus G, Dresselhaus MS (2004) New direction in nanotube science. Mater Today 7:30–45

    CAS  CrossRef  Google Scholar 

  • Textor M, de Jonge N (2018) Strategies for preparing graphene liquid cells for transmission electron microscopy. ACS Nano 18:3313–3321

    CAS  Google Scholar 

  • Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    CAS  CrossRef  Google Scholar 

  • Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang XM (2011) Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed 50:11644–11648

    CAS  CrossRef  Google Scholar 

  • Wang M, Yuan W, Yu X, Shi G (2014) Picomolar detection of mercury (II) using a three-dimensional porous graphene/polypyrrole composite electrode. Anal Bioanal Chem 406:6953–6956

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang M, Duan X, Xu Y, Duan X (2016) Functional three-dimensional graphene/polymer composites. ACS Nano 10:7231–7247

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang X, Narita A, Müllen K (2017) Precision synthesis versus bulk-scale fabrication of graphenes. Nat Rev Chem 2:0100

    CrossRef  CAS  Google Scholar 

  • Wilson J, Sloman L, He Z, Aksimentiev A (2016) Graphene nanopores for protein sequencing. Adv Func Mater 26:4830–4838

    CAS  CrossRef  Google Scholar 

  • Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330

    CAS  PubMed  CrossRef  Google Scholar 

  • Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    CAS  CrossRef  Google Scholar 

  • Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultralow laser power. Biomaterials 33:2206–2214

    CAS  PubMed  CrossRef  Google Scholar 

  • Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64

    CAS  PubMed  CrossRef  Google Scholar 

  • Yuk JM, Seo HK, Choi JW, Lee JY (2014) Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano 8:7478–7485

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang K, Zheng H, Liang S, Gao C (2016a) Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 37:131–142

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang Z, Fu X, Li K, Liu R, Peng D, He L, Wang M, Zhang H, Zhou L (2016b) One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide. Sens Acutators B 255:453–462

    Google Scholar 

  • Zhao Y-L, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhao Z-Q, Chen X, Yang Q, Liu J-H, Huang X-J (2012) Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on a polypyrrole/reduced graphene oxide Nanocomposite. Chem Commun 48:2180–2182

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science, ICT and Future Planning [NRF-2016M3A9B6918892].

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Hyun Jun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S.H. et al. (2021). Carbon Nanomaterials for Biomedical Application. In: Jun, BH. (eds) Nanotechnology for Bioapplications. Advances in Experimental Medicine and Biology, vol 1309. Springer, Singapore. https://doi.org/10.1007/978-981-33-6158-4_11

Download citation