Skip to main content

Solid Sorption Cycle for Refrigeration, Water Production, Eliminating NOx Emission and Heat Transfer

  • Chapter
  • First Online:
Property and Energy Conversion Technology of Solid Composite Sorbents

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 183 Accesses

Abstract

Composite sorbents in single-stage refrigeration cycle, two-stage freezing cycle, semi-open solar-driven sorption air-to-water cycle, NH3 sorption cycle, NOx converting cycle and solid sorption heat pipe cycle for refrigeration, eliminating NOx emission, water production and heat transfer are summarized in this chapter, which promote the relative commercial utilization in energy conversion fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Restuccia G, Freni A, Vasta S, Yu A (2004) Selective water sorbent for solid sorption chiller: experimental results and modelling. Int J Refrig 27:284–293

    Article  Google Scholar 

  2. Saha BB, Koyama S, Ng KC, Hamamoto Y, Akisawa A, Kashiwagi T (2006) Study on a dual-mode, multi-stage, multi-bed regenerative sorption chiller. Renew Energy 31:2076–2090

    Article  Google Scholar 

  3. Wang DC, Xia ZZ, Wu JY, Wang RZ, Zhai H, Dou WD (2005) Study of a novel silica gel-water sorption chiller. Part I. Design and performance prediction. Int J Refrig 28:1073–1083

    Article  Google Scholar 

  4. Saha BB, Kashiwagi T (1997) Experimental investigation of an advanced sorption refrigeration cycle. Ashrae Trans 103:50–58

    Google Scholar 

  5. Saha BB, Akisawa A, Kashiwagi T (2014) Solar/waste heat driven two-stage sorption chiller: the prototype. Renew Energy 23:93–101

    Article  Google Scholar 

  6. Erhard A, Hahne E (1997) Test and simulation of a solar-powered absorption cooling machine. Sol Energy 59:155–162

    Article  Google Scholar 

  7. Erhard A, Spindler K, Hahne E (1998) Test and simulation of a solar powered solid sorption cooling machine. Int J Refrig 21:133–141

    Article  Google Scholar 

  8. Pons M, Guilleminot JJ (1986) Design of an experimental solar-powered, solid-sorption ice maker. J Sol Energy Eng 108:332–337

    Article  Google Scholar 

  9. Wang LW, Wang RZ, Lu ZS, Xu YX, Wu JY (2006) Split heat pipe type compound sorption ice making test unit for fishing boats. Int J Refrig 29:456–468

    Article  Google Scholar 

  10. Meunier F (1986) Theoretical performances of solid adsorbent cascading cycles using the zeolite-water and active carbon-methanol pairs: four case studies. J Heat Recover Syst 6:491–498

    Article  Google Scholar 

  11. Pierrès NL, Mazet N, Stitou D (2007) Experimental results of a solar powered cooling system at low temperature. Int J Refrig 30:1050–1058

    Article  Google Scholar 

  12. El-Sharkawy II, Uddin K, Miyazaki T, Saha BB, Koyama S, Miyawaki J, Yoon S-H (2014) Sorption of ethanol onto parent and surface treated activated carbon powders. Int J Heat Mass Transf 73:445–455

    Article  Google Scholar 

  13. El-Sharkawy II, AbdelMeguid H, Saha BB (2013) Towards an optimal performance of sorption chillers: reallocation of sorption/desorption cycle times. Int J Heat Mass Transf 63:171–182

    Article  Google Scholar 

  14. Walmsley TG, Walmsley MRW, Atkins MJ, Neale JR (2014) Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage. Energy 75:53–67

    Article  Google Scholar 

  15. Ali SM, Chakraborty A (2015) Thermodynamic modelling and performance study of an engine waste heat driven sorption cooling for automotive air-conditioning. Appl Therm Eng 90:54–63

    Article  Google Scholar 

  16. Sharafian A, Mehr SMN, Thimmaiah PC, Huttema W, Bahrami M (2016) Effects of adsorbent mass and number of sorbent beds on the performance of a waste heat-driven sorption cooling system for vehicle air conditioning applications. Energy 112:481–493

    Google Scholar 

  17. Zhong YF, Fang TG, Wert KL (2011) An sorption air conditioning system to integrate with the recent development of emission control for heavy-duty vehicles. Energy 36:4125–4135

    Article  Google Scholar 

  18. Mills A, Farid M, Selman JR, Al-Hallaj S (2006) Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng 26:1652–1661

    Article  Google Scholar 

  19. Wang LW, Tamainot-Telto Z, Metcalf SJ, Critoph RE, Wang RZ (2010) Anisotropic thermal conductivity and permeability of consolidated expanded natural graphite. Appl Therm Eng 30:1805–1811

    Article  Google Scholar 

  20. Fayazmanesh K, Salari S, Bahrami M (2017) Effective thermal conductivity modeling of consolidated sorption composites containing graphite flakes. Int J Heat Mass Transf 115:73–79

    Article  Google Scholar 

  21. Tanashev YY, Krainov AV, Aristov YI (2013) Thermal conductivity of composite sorbents “salt in porous matrix” for heat storage and transformation. Appl Therm Eng 61:401–407

    Article  Google Scholar 

  22. Wang LW, Metcalf SJ, Critoph RE, Thorpe R, Tamainot-Telto Z (2011) Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid. Carbon 49:4812–4819

    Article  Google Scholar 

  23. Gao J, Wang LW, An GL, Liu JY, Xu SZ (2018) Performance analysis of multi-salt sorbents without sorption hysteresis for low-grade heat recovery. Renew Energy 118:718–726

    Article  Google Scholar 

  24. Gao J, Wang LW, Gao P, An GL, Lu HT (2018) Design and analysis of a gas heating/cooling sorption refrigeration system with multi-salt solid sorbent of CaCl2 and MnCl2. Int J Heat Mass Transf 126:39–47

    Article  Google Scholar 

  25. Gao J, Wang LW, Gao P, An GL, Wang ZX, Xu SZ, Wang RZ (2019) Performance investigation of a freezing system with novel multi-salt sorbent for refrigerated truck. Int J Refrig 98:129–138

    Article  Google Scholar 

  26. Wang LW, Wang RZ, Wu JY, Wang K, Wang SG (2004) Sorption ice makers for fishing boats driven by the exhaust heat from diesel engine: choice of sorption pair. Energy Convers Manage 45:2043–2057

    Article  Google Scholar 

  27. Neveu P, Castaing J (1993) Solid-gas chemical heat pumps: field of application and performance of the internal heat of reaction recovery process. Heat Recovery Syst CHP 13:233–251

    Article  Google Scholar 

  28. Yuanyang HU, Wang L, Lu XU, Wang R, Kiplagat J, Wang J (2011) A two-stage deep freezing chemisorption cycle driven by low-temperature heat source. Front Energy 5:263–269

    Article  Google Scholar 

  29. Wang J, Wang LW, Luo WL, Wang RZ (2013) Experimental study of a two-stage adsorption freezing machine driven by low temperature heat source. Int J Refrig 36:1029–1036

    Article  Google Scholar 

  30. Chatzidakis SK, Chatzidakis KS (2004) Refrigerated transport and environment. Int J Energy Res 28:887–897

    Article  Google Scholar 

  31. Wang RZ, Oliveira RG (2006) Sorption refrigeration-An efficient way to make good use of waste heat and solar energy. Prog Energy Combust Sci 32:424–458

    Article  Google Scholar 

  32. Fernandes MS, Brites GJVN, Costa JJ, Gaspar AR, Costa VAF (2014) Review and future trends of solar sorption refrigeration systems. Renew Sustain Energy Rev 39:102–123

    Article  Google Scholar 

  33. Hamdy M, Askalany AA, Harby K, Kora N (2015) An overview on sorption cooling systems powered by waste heat from internal combustion engine. Renew Sustain Energy Rev 51:1223–1234

    Article  Google Scholar 

  34. Zhang LZ (2000) Design and testing of an automobile waste heat sorption cooling system. Appl Therm Eng 20:103–114

    Article  Google Scholar 

  35. Jiangzhou S, Wang RZ, Lu YZ, Xu YX, Wu JY (2002) Experimental investigations on sorption air-conditioner used in internal-combustion locomotive driver-cabin. Appl Therm Eng 22:1153–1162

    Article  Google Scholar 

  36. Lu YZ, Wang RZ, Jianzhou S, Xu YX, Wu JY (2004) Practical experiments on an sorption air conditioner powered by exhausted heat from a diesel locomotive. Appl Therm Eng 24:1051–1059

    Article  Google Scholar 

  37. Abdullah MO, Tan IAW, Lim LS (2011) Automobile sorption air-conditioning system using oil palm biomass-based activated carbon: a review. Renew Sustain Energy Rev 15:2061–2072

    Article  Google Scholar 

  38. Zhang HG, Wang EH, Fan BY (2013) Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery. Energy Convers Manag 65:438–447

    Article  Google Scholar 

  39. Louajari M, Mimet A, Ouammi A (2011) Study of the effect of finned tube sorbent on the performance of solar driven sorption cooling machine using activated carbon-ammonia pair. Appl Energy 88:690–698

    Article  Google Scholar 

  40. Wang RZ, Xia ZZ, Wang LW, Lu ZS, Li SL, Li TX et al (2010) Heat transfer design in sorption refrigeration systems for efficient use of low grade thermal energy. In: 2010 14th international heat transfer conference, pp 575–589

    Google Scholar 

  41. Wang D, Zhang J, Yang Q, Li N, Sumathy K (2014) Study of sorption characteristics in silica gel-water sorption refrigeration. Appl Energy 113:734–741

    Article  Google Scholar 

  42. Gordeeva L, Frazzica A, Sapienza A, Aristov Y, Freni A (2014) Sorption cooling utilizing the “LiBr/silica - ethanol” working pair: dynamic optimization of the sorbent/heat exchanger unit. Energy 75:390–399

    Article  Google Scholar 

  43. Yuan-Yang HU (2011) Performance study of two-stage sorption refrigeration cycle based on CaCl2/BaCl2-NH3 working pair. J Eng Thermophys 32:1087–1090

    Google Scholar 

  44. Jian W, Yuan-Yang HU, Wang LW, Wang RZ (2011) Experiments on sorption performance and simulation on freezing system for CaCl2-BaCl2-NH3 two-stage sorption. J Shanghai Jiaotong Univ 45:1389–1394

    Google Scholar 

  45. Jiang L, Wang LW, Luo WL, Wang RZ (2015) Experimental study on working pairs for two-stage chemisorption freezing cycle. Renew Energy 74:287–297

    Article  Google Scholar 

  46. Gao P, Zhang XF, Wang LW, Wang RZ, Li DP, Liang ZW et al (2016) Study on MnCl2/CaCl2-NH3 two-stage solid sorption freezing cycle for refrigerated trucks at low engine load in summer. Energy Convers Manag 109:1–9

    Article  Google Scholar 

  47. Gao P, Wang LW, Wang RZ, Zhang XF, Li DP, Liang ZW et al (2016) Experimental investigation of a MnCl2/CaCl2-NH3 two-stage solid sorption freezing system for a refrigerated truck. Energy 103:16–26

    Article  Google Scholar 

  48. Gao P, Wang LW, Wang RZ, Li DP, Liang ZW (2016) Optimization and performance experiments of a MnCl2/CaCl2-NH3 two-stage solid sorption freezing system for a refrigerated truck. Int J Refrig 71:94–107

    Article  Google Scholar 

  49. Jiang L, Wang LW, Wang RZ (2014) Investigation on thermal conductive consolidated composite CaCl2 for sorption refrigeration. Int J Therm Sci 81:68–75

    Article  Google Scholar 

  50. Uche J, Martínez-Gracia A, Círez F, Carmona U (2015) Environmental impact of water supply and water use in a Mediterranean water stressed region. J Clean Prod 88:196–204

    Article  Google Scholar 

  51. Ziolkowska JR (2014) Is desalination affordable? Regional cost and price analysis. Water Resour Manag 29:1385–1397

    Article  Google Scholar 

  52. Fiorenza G, Sharma VK, Braccio G (2003) Techno-economic evaluation of a solar powered water desalination plant. Energy Convers Manag 44:2217–2240

    Article  Google Scholar 

  53. Shanmugam GJG, Ravindran S (2004) Review on the uses of appropriate techniques for arid environment. In: International conference on water resources and arid environment

    Google Scholar 

  54. Alayli Y, Hadji NE, Leblond J (1987) A new process for the extraction of water from air. Desalination 67:227–229

    Article  Google Scholar 

  55. Abualhamayel HI, Gandhidasan P (1997) A method of obtaining fresh water form humid atmosphere. Desalination 113:51–63

    Article  Google Scholar 

  56. Bergmair D, Metz SJ, de Lange HC, van Steenhoven AA (2014) System analysis of membrane facilitated water generation from air humidity. Desalination 339:26–33

    Article  Google Scholar 

  57. Gandhidasan P, Abualhamayel HI (2005) Modeling and testing of a dew collection system. Desalination 180:47–51

    Article  Google Scholar 

  58. Aristov YI (2013) Challenging offers of material science for sorption heat transformation: a review. Appl Therm Eng 50:1610–1618

    Article  Google Scholar 

  59. Wang JY, Wang RZ, Wang LW (2016) Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents. Appl Therm Eng 100:893–901

    Article  Google Scholar 

  60. Cui Q, Chen H, Tao G, Yao H (2005) Performance study of new adsorbent for solid desiccant cooling. Energy 30:273–279

    Article  Google Scholar 

  61. Zheng X, Ge TS, Hu LM, Wang RZ (2015) Development and characterization of mesoporous silicate-LiCl composite desiccants for solid desiccant cooling systems. Ind Eng Chem Res 54:2966–2973

    Article  Google Scholar 

  62. Zheng X, Ge TS, Wang RZ (2014) Recent progress on desiccant materials for solid desiccant cooling systems. Energy 74:280–294

    Article  Google Scholar 

  63. Yu N, Wang RZ, Lu ZS, Wang LW (2014) Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage. Chem Eng Sci 111:73–84

    Article  Google Scholar 

  64. Bui DT, Nida A, Ng Kim C, Chua Kian J (2016) Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes. J Membr Sci 498:254–262

    Article  Google Scholar 

  65. Aristov YI, Tokarev MM, Cacciola G, Restuccia G (1996) Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: sorption properties. React Kinet Catal Lett 59:325–333

    Article  Google Scholar 

  66. Aristov YI, Tokarev MM, Restuccia G, Cacciola G (1996) Selective water sorbents for multiple applications, 2. CaCl2 confined in micropores of silica gel. React Kinet Catal Lett 59:335–342

    Article  Google Scholar 

  67. Gordeeva LG, Restuccia G, Cacciola G, Aristov YI (1998) Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties. React Kinet Catal L 63:81–88

    Article  Google Scholar 

  68. Aristov YI, Glaznev IS, Freni A, Restuccia G (2006) Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): influence of grain size and temperature. Chem Eng Sci 61:1453–1458

    Article  Google Scholar 

  69. Aristov YI (2007) Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties (review). J Chem Eng Jpn 40:1242–1251

    Article  Google Scholar 

  70. Aristov Y, Tokarev MM, Gordeeva LG, Snytnikov VN, Parmon VN (1999) New composite sorbents for solar-driven technology of fresh water production from the atmosphere. Sol Energy 66:165–168

    Google Scholar 

  71. Ji JG, Wang RZ, Li LX (2007) New composite adsorbent for solar-driven fresh water production from the atmosphere. Desalination 2:176–182

    Article  Google Scholar 

  72. Gad HE, Hamed AM, El-Sharkawy II (2001) Application of a solar desiccant/collector system for water recovery from atmospheric air. Renew Energy 22:541–556

    Google Scholar 

  73. Kabeel AE (2007) Water production from air using multi-shelves solar glass pyramid system. Renew Energy 32:157–172

    Article  Google Scholar 

  74. Wang JY, Liu JY, Wang RZ, Wang LW (2017) Experimental research of composite solid sorbents for fresh water production driven by solar energy. Appl Therm Eng 121:941–950

    Article  Google Scholar 

  75. Hassan HZ, Mohamad AA (2013) Thermodynamic analysis and theoretical study of a continuous operation solar-powered sorption refrigeration system. Energy 61:167–178

    Article  Google Scholar 

  76. Liang P, Yuan L, Yang X, Zhou S, Huang X (2013) Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. Water Res 47:2523–2530

    Article  Google Scholar 

  77. Wang JY, Wang RZ, Wang LW, Liu JY (2017) A high efficient semi-open system for fresh water production from atmosphere. Energy 138(nov.1):542–551

    Google Scholar 

  78. Riffel DB, Schmidt FP, Belo FA, Leite APF, Cortés FB, Chejne F et al (2011) Sorption of water on Grace Silica Gel 127B at low and high pressure. Sorption 17:977–984

    Google Scholar 

  79. Wang JY, Liu JY, Wang RZ, Wang LW (2017) Experimental investigation on two solar-driven sorption based devices to extract fresh water from atmosphere. Appl Therm Eng 127:1608–1616

    Article  Google Scholar 

  80. Wang JY, Wang RZ, Tu YD, Wang LW (2018) Universal scalable sorption-based atmosphere water harvesting. Energy 165:387–395

    Article  Google Scholar 

  81. Li H, Dai YJ, Li Y, La D, Wang RZ (2011) Experimental investigation on a one-rotor two-stage desiccant cooling/heating system driven by solar air collectors. Appl Therm Eng 31:3677–3683

    Article  Google Scholar 

  82. Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Change Hum Health 2(2):90–104

    Article  Google Scholar 

  83. He H, Weng D, Zi XY (2007) Diesel emission control technologies: a review. Environ Sci 28(6):1169–1177

    Google Scholar 

  84. Cottle JE (1959) Ammonia storage and recovery system, US

    Google Scholar 

  85. Walker J, Speronello BK (1992) Development of an ammonia/SCR NOx reduction system for heavy duty natural gas engine. Int Off Highw Powerpl Congr Expo 931:171–181

    Google Scholar 

  86. Chen HJ, Lin MH (1999) Modeling a boiling-liquid, expanding-vapor explosion phenomenon with application to relief device design for liquefied ammonia storage. Ind Eng Chem Res 38:479–487

    Article  Google Scholar 

  87. Kaboord WS, Becher DM, Begale FJ, Crane RF, Kuznicki SM (2007) Sorption based ammonia storage and regeneration system, US

    Google Scholar 

  88. Chun YL, Aika K (2004) Effect of the Cl/Br molar ratio of a CaCl2−CaBr2 mixture used as an ammonia storage material. Ind Eng Chem Res 43:6994–7000

    Article  Google Scholar 

  89. Johannessen T, Schmidt H, Svagin J, Johansen J, Oechsle J, Bradley R (2008) Ammonia storage and delivery systems for automotive NOx aftertreatment. SAE World Congr Exhib 2154:1027–1034

    Google Scholar 

  90. Veselovskaya JV, Tokarev MM (2011) Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 4. Dynamics of quasi-isobaric ammonia sorption and desorption on BaCl/vermiculite. Appl Therm Eng 31:566–572

    Article  Google Scholar 

  91. Fulks G, Fisher GB, Rahmoeller K, Wu MC, D'Herde E, Tan J (2009) A review of solid materials as alternative ammonia sources for lean NOx reduction with SCR. SAE technical papers

    Google Scholar 

  92. Wang LW, Wang RZ, Oliveira RG (2009) A review on sorption working pairs for refrigeration. Renew Sustain Energy Rev 13:518–534

    Article  Google Scholar 

  93. Jin ZQ, Wang LW, Jiang L, Wang RZ (2013) Experiment on the thermal conductivity and permeability of physical and chemical compound adsorbents for sorption process. Heat Mass Transf 49:1117–1124

    Article  Google Scholar 

  94. Jiang L, Wang LW, Jin ZQ, Wang RZ, Dai YJ (2013) Effective thermal conductivity and permeability of compact compound ammoniated salts in the sorption/desorption process. Int J Therm Sci 71:103–110

    Article  Google Scholar 

  95. Zheng X, Ge TS, Wang RZ, Hu LM (2014) Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts. Chem Eng Sci 120:1–9

    Article  Google Scholar 

  96. Zheng X, Ge TS, Jiang Y, Wang RZ (2014) Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger. Int J Refrig 51:24–32

    Article  Google Scholar 

  97. Wang ZX, Wang LW, Gao P, Yu Y, Wang RZ (2018) Analysis of composite sorbents for ammonia storage to eliminate NOx emission at low temperatures. Appl Therm Eng 128:1382–1390

    Article  Google Scholar 

  98. Wang LW, Metcalf SJ, Critoph RE, Tamainot-Telto Z, Thorpe R (2013) Two types of natural graphite host matrix for composite activated carbon adsorbents. Appl Therm Eng 50:1652–1657

    Article  Google Scholar 

  99. Wang R, Wang L, Wu J (2014) Sorption refrigeration technology: theory and application. Wiley

    Google Scholar 

  100. Kiplagat JK, Wang RZ, Oliveira RG, Li TX, Liang M (2013) Experimental study on the effects of the operation conditions on the performance of a chemisorption air conditioner powered by low grade heat. Appl Energy 103:571–580

    Article  Google Scholar 

  101. Zhou ZS, Wang LW, Jiang L, Gao P, Wang RZ (2016) Non-equilibrium sorption performances for composite sorbents of chlorides—ammonia working pairs for refrigeration. Int J Refrig 65:60–68

    Article  Google Scholar 

  102. Lee C (2016) Modeling urea-selective catalyst reduction with vanadium catalyst based on NH3 temperature programming desorption experiment. Fuel 173:155–163

    Article  Google Scholar 

  103. Meng B, Zhao Z, Chen Y, Wang X, Li Y, Qiu J (2014) Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia. Chem Commun 50:12396

    Article  Google Scholar 

  104. Reay DA, Kew PA, McGlen RJ (2013) Heat pipes: theory, design and applications, 6th edn. Elsevier, Whitley Bay, United Kingdom, pp 1–251

    Google Scholar 

  105. Jafari D et al (2016) Two-phase closed thermosyphons: a review of studies and solar applications. Renew Sustain Energy Rev 53:575–593

    Article  Google Scholar 

  106. Tang Y et al (2013) Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices. Energy Convers Manag 66:66–76

    Article  Google Scholar 

  107. Jiang L et al (2014) Thermal performance of a novel porous crack composite wick heat pipe. Energy Convers Manag 81:10–18

    Article  Google Scholar 

  108. Brahim T, Dhaou MH, Jemni A (2014) Theoretical and experimental investigation of plate screen mesh heat pipe solar collector. Energy Convers Manag 87:428–438

    Article  Google Scholar 

  109. Hakeem MA, Kamil M, Arman I (2008) Prediction of temperature profiles using artificial neural networks in a vertical thermosiphon re-boiler. Appl Therm Eng 28:1572–1579

    Article  Google Scholar 

  110. Abreu SL, Colle S (2004) An experimental study of two-phase closed thermosyphons for compact solar domestic hot-water systems. Sol Energy 76:141–145

    Article  Google Scholar 

  111. Sundaram AS, Bhaskaran A (2011) Thermal modeling of thermosyphon integrated heat sink for CPU cooling. J Electron Cool Therm Control 1:15–21

    Article  Google Scholar 

  112. El-Genk MS, Saber HH (1997) Flooding limit in closed, two-phase flow thermosyphons. Int J Heat Mass Transf 40(9):2147–2164

    Article  Google Scholar 

  113. Nguyen-Chi H, Groll M (1981) Entrainment or flooding limit in a closed two-phase thermosyphon. J Heat Recover Syst 1(4):275–286

    Article  Google Scholar 

  114. Shatto DP, Besly JA, Peterson GP (1997) Visualization study of flooding and entrainment in a closed two-phase thermosyphon. J Thermophys Heat Transf 11(4):579–581

    Article  Google Scholar 

  115. Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energy Combust Sci 39:489–514

    Article  Google Scholar 

  116. Flueckiger SM, Volle F, Garimella SV et al (2012) Thermodynamic and kinetic investigation of a chemical reaction-based miniature heat pump. Energy Convers Manag 64(64):222–231

    Article  Google Scholar 

  117. Jiang L, Wang LW, Zhou ZS et al (2016) Investigation on non-equilibrium performance of composite adsorbent for resorption refrigeration. Energy Convers Manag 119:67–74

    Article  Google Scholar 

  118. Vasiliev L, Vasiliev L (2005) Sorption heat pipe-a new thermal control device for space and ground application. Int J Heat Mass Transf 48(12):2464–2472

    Article  Google Scholar 

  119. Vasiliev L, Vasiliev L (2004) The sorption heat pipe-a new device for thermal control and active cooling. Superlattices Microstruct 35(3–6):485–495

    Article  Google Scholar 

  120. Yu Y, Wang LW, Jiang L, Gao P, Wang RZ (2017) The feasibility of solid sorption heat pipe for heat transfer. Energy Convers Manag 138:148–155

    Article  Google Scholar 

  121. Yu Y, Wang LW, An GL (2018) Experimental study on sorption and heat transfer performance of NaBr-NH3 for solid sorption heat pipe. Int J Heat Mass Transf 117:125–131

    Article  Google Scholar 

  122. Jasvanth VS et al (2017) Design and testing of an ammonia loop heat pipe. Appl Therm Eng 111:1655–1663

    Article  Google Scholar 

  123. Song H et al (2016) Experimental study of an ammonia loop heat pipe with a flat plate evaporator. Int J Heat Mass Transf 102:1050–1055

    Article  Google Scholar 

  124. Junior JB, Vlassov VV, Genaro G, Guedes UTV (2015) Dynamic test method to determine the capillary limit of axially grooved heat pipes. Exp Thermal Fluid Sci 60:290–298

    Article  Google Scholar 

  125. Smitka M, Kolková Z, Nemec P, Malcho M (2014) Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component. EPJ Web Conf 67:02109

    Article  Google Scholar 

  126. Vantúch M, Malcho M (2014) Influence of structural design condensing part of NH3 heat pipe to heat transfer. EPJ Web Conf 67:02123

    Article  Google Scholar 

  127. Xue ZH, Qu W (2014) Experimental study on effect of inclination angles to ammonia pulsating heat pipe. Chin J Aeronaut 27:1122–1127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., An, G., Gao, J., Wang, R. (2021). Solid Sorption Cycle for Refrigeration, Water Production, Eliminating NOx Emission and Heat Transfer. In: Property and Energy Conversion Technology of Solid Composite Sorbents. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6088-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6088-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6087-7

  • Online ISBN: 978-981-33-6088-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics