Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter introduces techniques for developing different solid composite sorbents in detail, including processing ENG without or with graphite intercalation compounds (GICs), and developing the composite solid sorbents with ENG, activated carbon, activated carbon fiber and silica gel by simple mixture and consolidation or impregnation and compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celzard A, Mareche JF, Furdin G (2005) Modelling of exfoliated graphite. Prog Mater Sci 50:93–179

    Article  Google Scholar 

  2. Yue XQ, Yu K, Ji L, Wang ZJ, Zhang FC, Qian LH, Liu YF, Zhang RJ (2011) Effect of heating temperature of expandable graphite on amorphization behavior of powder expanded graphite-Fe mixtures by ball-milling. Powder Technol 211:95–99

    Article  Google Scholar 

  3. Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186

    Article  Google Scholar 

  4. Chung DDL (1987) Intercalate vaporization during the exfoliation of graphite intercalated with bromine. Carbon 25(3):361–365

    Article  Google Scholar 

  5. Chung DDL (1987) Exfoliation of graphite. J Mater Sci 22(12):4190–4198

    Article  Google Scholar 

  6. Tang QW, Wu JH, Sun H, Fang SJ (2009) Crystallization degree change of expanded graphite by milling and annealing. J Alloys Compd 475:429–433

    Article  Google Scholar 

  7. Tian B, Yu XG, Wang LW, Wang RZ (2011) Expansion process and thermal conductivity performance of the graphite used as the heat and mass transfer intensification material (in Chinese). J Chem Eng Chin Univ 25(4):572–578

    Google Scholar 

  8. Inagaki M, Tashiro R, Washino Y-i, Toyoda M (2004) Exfoliation process of graphite via intercalation compounds with sulfuric acid. J Phys Chem Solids 65:133–137

    Article  Google Scholar 

  9. Kang F, Zheng Y, Wang H, Nishi Y, Inagaki M (2002) Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon 40(9):1575–1781

    Article  Google Scholar 

  10. Avdeev VV, Martynov IU, Nikolskaya IV, Monyakina LA, Sorokina NE (1996) Investigation of the graphite-H2SO4-gaseous oxidizer (Cl2, O3, SO3) system. J Phys Chem Solids 57:837–840

    Article  Google Scholar 

  11. Avdeev VV, Martynov IU, Nikol’skaya IV, Monyakina LA, Sorokina NE (1994) Calorimetric and potentiometry investigations of the acceptor compounds intercalations into graphite. Mol Cryst Liq Cryst 244:115–120

    Article  Google Scholar 

  12. Shornikova O, Kogan E, Sorokina N, Avdeev V (2009) The specific surface area and porous structure of graphite materials. Russ J Phys Chem A 83:1022–1025

    Article  Google Scholar 

  13. Kang F, Leng Y, Zhang TY (1997) Electrochemical synthesis and characterization of formic acid-graphite intercalation compound. Carbon 35(8):1089–1096

    Article  Google Scholar 

  14. Yoshida A, Hishiyama Y, Inagaki M (1991) Exfoliated graphite from various intercalation compounds. Carbon 29(8):1227–1231

    Article  Google Scholar 

  15. Inagaki M, Muramatsu K, Maeda Y, Maekawa K (1983) Production of exfoliated graphite from potassium-graphitetetrahydrofuran ternary compounds and its applications. Synth Met 8:335–342

    Article  Google Scholar 

  16. Kemin S, Huijuan D (2000) On lower-nitrogen expandable graphite. Mater Res Bull 35:425–430

    Article  Google Scholar 

  17. Makotchenko VG, Grayfer ED, Nazarov AS, Kim SJ, Fedorov VE (2011) The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds. Carbon 49(10):3233–3241

    Article  Google Scholar 

  18. Wei T, Fan Z, Luo G, Zheng C, Xie D (2009) A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon 47(1):337–339

    Article  Google Scholar 

  19. Tryba B, Morawski AW, Inagaki M (2005) Preparation of exfoliated graphite by microwave irradiation. Carbon 43(11):2417–2419

    Article  Google Scholar 

  20. Manning TJ, Mitchell M, Stach J, Vickers T (1999) Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma. Carbon 37(7):1159–1164

    Article  Google Scholar 

  21. Schlogl R, Boehm HP (1984) The reaction of potassium-graphite intercalation compounds with water. Carbon 22:351–358

    Article  Google Scholar 

  22. Skowronski JM (1988) Exfoliation of graphite-CrO3 intercalation compounds in hydrogen peroxide solution. J Mater Sci 23:2243–2246

    Article  Google Scholar 

  23. Dowell MB, Howard RA (1986) Tensile and compressive properties of flexible graphite foils. Carbon 24(3):311–323

    Article  Google Scholar 

  24. Gu WT, Zhang W, Li XM, Zhu HW, Wei JQ, Li Z, Shu QK, Wang C, Wang KL, Shen WC, Kang FY, Wu DH (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369

    Article  Google Scholar 

  25. Malas A, Pal P, Das CK (2014) Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater Des 55:664–673

    Article  Google Scholar 

  26. Yue XQ, Li L, Zhang RJ, Zhang FC (2009) Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling. Mater Charact 60:1541–1544

    Article  Google Scholar 

  27. Han JH, Cho KW, Lee KH, Kim H (1998) Porous graphite matrix for chemical heat pumps. Carbon 36(12):1801–1810

    Article  Google Scholar 

  28. Celzard A, Krzesinska M, Mareche JF, Puricelli S (2001) Scalar and vectorial percolation in compressed expanded graphite. Phys A 294:283–294

    Article  Google Scholar 

  29. Wang LW, Metcalf SJ, Thorpe R, Critoph RE, Tamainot-Telto Z (2011) Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid. Carbon 49(14):4812–4819

    Article  Google Scholar 

  30. Wang RZ, Wang LW, Wu JY (2014) Adsorption refrigeration technology: theory and application. Wiley, Singapore

    Book  Google Scholar 

  31. Wang LW, Tamainot-Telto Z, Thorpe R, Critoph RE, Metcalf SJ, Wang RZ (2011) Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renew Energy 36:2062–2066

    Article  Google Scholar 

  32. Wang LW, Metcalf SJ, Critoph RE, Tamainot-Telto Z, Thorpe R (2013) Two types of natural graphite host matrix for composite activated carbon adsorbents. Appl Therm Eng 50:1652–1657

    Article  Google Scholar 

  33. Jin ZQ, Tian B, Wang LW, Wang RZ (2013) Comparison on thermal conductivity and permeability of granular and consolidated activated carbon for refrigeration. Chin J Chem Eng 21(6):676–682

    Article  Google Scholar 

  34. Wang LW, Metcalf SJ, Thorpe R, Critoph RE, Tamainot-Telto Z (2012) Development of thermal conductive consolidated activated carbon for adsorption refrigeration. Carbon 50:977–986

    Article  Google Scholar 

  35. Zhao YJ, Wang LW, Wang RZ, Ma KQ, Jiang L (2013) Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application. Int J Heat Mass Transf 67:867–876

    Article  Google Scholar 

  36. Zheng X, Wang LW, Wang RZ, Ge TS, Ishugah TF (2014) Thermal conductivity, pore structure and adsorption performance of compact composite silica gel. Int J Heat Mass Transf 68:435–443

    Article  Google Scholar 

  37. Eun TH, Song HK, Han JH, Lee KH, Kim JN (2000) Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks. Int J Refrig 23:64–73

    Article  Google Scholar 

  38. Lee CH, Park SH, Choi SH, Kim YS, Kim SH (2005) Characteristics of non-uniform reaction blocks for chemical heat pump. Chem Eng Sci 60:1401–1409

    Article  Google Scholar 

  39. Kim ST, Ryu J, Kato Y (2011) Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump. Prog Nucl Energy 53:1027–1033

    Article  Google Scholar 

  40. Jiang L, Wang LW, Wang RZ (2014) Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration. Int J Therm Sci 81:68–75

    Article  Google Scholar 

  41. Zajaczkowski B, Królicki Z, Jezowski A (2010) New type of sorption composite for chemical heat pump and refrigeration systems. Appl Therm Eng 30:1455–1460

    Article  Google Scholar 

  42. Han JH, Cho KW, Lee KH, Mauran S (1996) Characterization of graphite-salt blocks in chemical heat pumps. In: Proceedings of international absorption heat pump conference, Montreal, Canada, pp 67–73

    Google Scholar 

  43. Mauran S, Coudevylle O, Lu HB (1996) Optimization of porous reactive media for solid sorption heat pumps. In: Proceedings of the international sorption heat pump conference, pp 3–8

    Google Scholar 

  44. Wang K, Wu JY, Xia ZZ, Li SL, Wang RZ (2008) Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats. Renew Energy 33(4):780–790

    Article  Google Scholar 

  45. Oliveira RG, Wang RZ, Wang C (2007) Evaluation of the cooling performance of a consolidated expanded graphite-calcium chloride reactive bed for chemisorption icemaker. Int J Refrig 30(1):103–112

    Article  Google Scholar 

  46. Kiplagat JK, Wang RZ, Oliveira RG, Li TX (2010) Lithium chloride—expanded graphite composite sorbent for solar powered ice maker. Sol Energy 84:1587–1594

    Article  Google Scholar 

  47. Xu J, Oliveira RG, Wang RZ (2011) Resorption system with simultaneous heat and cold production. Int J Refrig 34:1262–1267

    Article  Google Scholar 

  48. Fujioka K, Suzuki H (2013) Thermophysical properties and reaction rate of composite reactant of calcium chloride and expanded graphite. Appl Therm Eng 50:1627–1632

    Article  Google Scholar 

  49. Kim ST, Ryu J, Kato Y (2013) Optimization of magnesium hydroxide composite material mixed with expanded graphite and calcium chloride for chemical heat pumps. Appl Therm Eng 50:485–490

    Article  Google Scholar 

  50. Py X, Daguerre E, Menard D (2002) Composites of expanded natural graphite and in situ prepared activated carbons. Carbon 40:1255–1265

    Article  Google Scholar 

  51. Menard D, Py X, Mazet N (2003) Development of thermally conductive packing for gas separation. Carbon 41:1715–1727

    Article  Google Scholar 

  52. Gao J, Wang LW, Wang RZ et al (2017) Solution to the sorption hysteresis by novel compact composite multi-salt sorbents. Appl Therm Eng 111:580–585

    Article  Google Scholar 

  53. Wang MZ, He F (1984) Manufacture, property, and application of carbon fiber (in Chinese, ISBN 15030.585). Science Press, Beijing, China

    Google Scholar 

  54. Dellero T, Sarmeo D, Touzain P (1999) A chemical heat pump using carbon fibers as additive. Part I: Enhancement of thermal conduction. Appl Therm Eng 19:991–1000

    Article  Google Scholar 

  55. Dellero T, Touzain P (1999) A chemical heat pump using carbon fibers as additive. Part II: Study of constraint parameters. Appl Therm Eng 19:1001–1011

    Article  Google Scholar 

  56. Vasiliev LL, Mishkinis DA, Antukh AA, Kulakov AG (2004) Resorption heat pump. Appl Therm Eng 24:1893–1903

    Article  Google Scholar 

  57. Vasiliev LL, Mishkinis DA, Vasiliev Jr LL (1996) Multi-effect complex compound/ammonia sorption machines. In: Proceedings of international absorption heat pump conference, Montreal, Canada, pp 3–8

    Google Scholar 

  58. Vasiliev LL, Mishkinis DA, Antuh A, Snelson K, Vasiliev Jr LL (1999) Multisalt-carbon chemical cooler for space applications. In: Proceedings of international absorption heat pump conference, Munich, Germany pp 579–83

    Google Scholar 

  59. Wang JY, Wang RZ, Wang LW (2016) Water vapor sorption performance of ACF-CaCl2, and silica gel-CaCl2, composite adsorbents. Appl Therm Eng 100:893–901

    Article  Google Scholar 

  60. Wang LW, Wang RZ, Wu JY, Wang K (2004) Compound adsorbent for adsorptin ice maker on fishing boats. Int J Refrig 27(4):401–408

    Article  Google Scholar 

  61. Wang LW (2005) Performances, mechanisms, and application of a new type compound adsorbent for efficient heat pipe type refrigeration driven by waste heat (in Chinese, PhD thesis). Shanghai Jiao Tong University, Shanghai, China

    Google Scholar 

  62. Aristov YI, Restuccia G, Caccioba G et al (2002) A family of new working materials for solid sorption air conditioning systems. Appl Therm Eng 22:191–204

    Article  Google Scholar 

  63. Tokarev M, Gordeeva L, Romannikov V, Glaznev I, Aristov YI (2002) New composite sorbent CaCl2 in mesopores for sorption cooling/heating. Int J Therm Sci 41:470–474

    Article  Google Scholar 

  64. Levitskij EA, Aristov YI, Tokarev MM et al (1996) Chemical heat accumulators: a new approach to accumulating low potential heat. Solar Energy and Solar Cells 44:219–235

    Article  Google Scholar 

  65. Restuccia G, Freni A, Vasta S, Aristov YI (2004) Selective water sorbent for solid sorption chiller: experimental results and modeling. Int J Refrig 27:284–293

    Article  Google Scholar 

  66. Aristov YI, Tokarev MM, Parmon VN, Restuccia G, Burger HD et al (1999) New working materials for sorption cooling/heating driven by low temperature heat: properties. In: Proceedings of international sorption heat pump conference, Munich, Germany, pp 24–26

    Google Scholar 

  67. Daou K (2006) The development, experiment, and simulation of a new type of efficient composite adsorbent driven by the low grade heat source (in Chinese, PhD thesis). Shanghai Jiao Tong University, Shanghai, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., An, G., Gao, J., Wang, R. (2021). Development of Solid Composite Sorbents. In: Property and Energy Conversion Technology of Solid Composite Sorbents. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6088-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6088-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6087-7

  • Online ISBN: 978-981-33-6088-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics