Skip to main content

How Good Are Classification Models in Handling Dynamic Intrusion Attacks in IoT?

  • Conference paper
  • First Online:
Intelligent Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 185))

  • 420 Accesses

Abstract

Internet of things (IoT) is vulnerable to the intrusion that may lead to security threats in the IoT ecosystem. Due to different architecture and protocol stack, the traditional intrusion detection system (IDS) does not work well for generating alarm during possible intrusion in IoT. Machine learning is one of the potential tools for effective intrusion detection. However, to apply them in IoT, it may need customization to work with IoT traffic. The situation becomes adverse when the attack patterns are not known Apriori. To mislead IDS, attackers frequently change the attack patterns. As a result, traditional machine learning methods usually fail to handle such dynamic intrusion effectively. In this work, we try to assess seven (07) well-known classification models for their suitability in the IoT network in detecting novel/dynamic attacks. It is more vulnerable and lethal for a system, if a detection system misclassifies a novel (unseen) attack as normal traffic. During our study, we assess such scenario of misclassification by our candidate models. Our result reveals that random forest performs better in detecting seen IoT attacks. SVM is superior in keeping a low misclassification rate for dynamic attacks as regular traffic. Our investigation further concludes that the best IDS system is not always the best detector for handling novel attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The words novel/unseen/unknown/dynamic for never seen before the attack will be used interchangeably.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/.

  3. 3.

    https://www.cs.waikato.ac.nz/ml/weka/.

References

  1. Ashton, K., et al.: That ‘internet of things’ thing. RFID J. 22(7), 97–114 (2009)

    Google Scholar 

  2. Borgia, E.: The internet of things vision: key features, applications and open issues. Comput. Commun. 54, 1–31 (2014)

    Article  Google Scholar 

  3. Bamakan, S.M.H., Wang, H., Yingjie, T., Shi, Y.: An effective intrusion detection framework based on mclp/svm optimized by time-varying chaos particle swarm optimization. Neurocomputing 199, 90–102 (2016)

    Article  Google Scholar 

  4. Farnaaz, N., Jabbar, M.: Random forest modeling for network intrusion detection system. Procedia Comput. Sci. 89(1), 213–217 (2016)

    Article  Google Scholar 

  5. Singh, R., Kumar, H., Singla, R.: An intrusion detection system using network traffic profiling and online sequential extreme learning machine. Expert Syst. Appl. 42(22), 8609–8624 (2015)

    Article  Google Scholar 

  6. Wang, H., Gu, J., Wang, S.: An effective intrusion detection framework based on SVM with feature augmentation. Knowl.-Based Syst. 136, 130–139 (2017)

    Article  Google Scholar 

  7. da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019)

    Article  Google Scholar 

  8. Zarpelão, B.B., Miani, R.S., Kawakani, C.T., de Alvarenga, S.C.: A survey of intrusion detection in internet of things. J. Netw. Comput. Appl. 84, 25–37 (2017)

    Article  Google Scholar 

  9. Meng, W.: Intrusion detection in the era of IoT: building trust via traffic filtering and sampling. Computer 51(7), 36–43 (2018)

    Article  Google Scholar 

  10. Bostani, H., Sheikhan, M.: Hybrid of anomaly-based and specification-based ids for internet of things using unsupervised OPF based on mapreduce approach. Comput. Commun. 98, 52–71 (2017)

    Article  Google Scholar 

  11. Diro, A.A., Chilamkurti, N.: Distributed attack detection scheme using deep learning approach for internet of things. Future Gener. Comput. Syst. 82, 761–768 (2018)

    Article  Google Scholar 

  12. Azmoodeh, A., Dehghantanha, A., Choo, K.K.R.: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1), 88–95 (2018)

    Article  Google Scholar 

  13. Mukherjee, S., Sharma, N.: Intrusion detection using Naive Bayes classifier with feature reduction. Procedia Technol. 4, 119–128 (2012)

    Article  Google Scholar 

  14. Narudin, F.A., Feizollah, A., Anuar, N.B., Gani, A.: Evaluation of machine learning classifiers for mobile malware detection. Soft. Comput. 20(1), 343–357 (2016)

    Article  Google Scholar 

  15. Ozay, M., Esnaola, I., Vural, F.T.Y., Kulkarni, S.R., Poor, H.V.: Machine learning methods for attack detection in the smart grid. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1773–1786 (2015)

    Article  MathSciNet  Google Scholar 

  16. Alsheikh, M.A., Lin, S., Niyato, D., Tan, H.P.: Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun. Surv. Tutor. 16(4), 1996–2018 (2014)

    Article  Google Scholar 

  17. Branch, J.W., Giannella, C., Szymanski, B., Wolff, R., Kargupta, H.: In-network outlier detection in wireless sensor networks. Knowl. Inf. Syst. 34(1), 23–54 (2013)

    Article  Google Scholar 

  18. Xiao, L., Li, Y., Han, G., Liu, G., Zhuang, W.: Phy-layer spoofing detection with reinforcement learning in wireless networks. IEEE Trans. Veh. Technol. 65(12), 10037–10047 (2016)

    Article  Google Scholar 

  19. Xiao, L., Li, Y., Huang, X., Du, X.: Cloud-based malware detection game for mobile devices with offloading. IEEE Trans. Mob. Comput. 16(10), 2742–2750 (2017)

    Article  Google Scholar 

  20. Xiao, L., Xie, C., Chen, T., Dai, H., Poor, H.V.: A mobile offloading game against smart attacks. IEEE Access 4, 2281–2291 (2016)

    Article  Google Scholar 

  21. Bertino, E., Islam, N.: Botnets and internet of things security. Computer 50(2), 76–79 (2017)

    Article  Google Scholar 

  22. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: Ddos in the IoT: Mirai and other botnets. Computer 50(7), 80–84 (2017)

    Article  Google Scholar 

  23. Raza, S., Wallgren, L., Voigt, T.: Svelte: real-time intrusion detection in the internet of things. Ad Hoc Netw. 11(8), 2661–2674 (2013)

    Article  Google Scholar 

  24. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  25. Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: idistance: an adaptive b+-tree based indexing method for nearest neighbor search. ACM Trans. Database Syst. (TODS) 30(2), 364–397 (2005)

    Article  Google Scholar 

  26. McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48. Citeseer (1998)

    Google Scholar 

  27. Zhang, H.: The optimality of Naive Bayes. AA 1(2), 3 (2004)

    Google Scholar 

  28. Panda, M., Patra, M.R.: Network intrusion detection using Naive Bayes. Int. J. Comput. Sci. Netw. Secur. 7(12), 258–263 (2007)

    Google Scholar 

  29. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  30. Cristianini, N., Shawe-Taylor, J., et al.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press (2000)

    Google Scholar 

  31. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283 (2013)

    Article  Google Scholar 

  32. Loh, W.Y.: Classification and regression trees. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)

    Article  Google Scholar 

  33. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  34. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence 14(771–780), 1612 (1999)

    Google Scholar 

  35. Jumutc, V., Langone, R., Suykens, J.A.: Regularized and sparse stochastic k-means for distributed large-scale clustering. In: 2015 IEEE International Conference on Big Data (Big Data). pp. 2535–2540. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chettri, L., Roy, S. (2021). How Good Are Classification Models in Handling Dynamic Intrusion Attacks in IoT?. In: Udgata, S.K., Sethi, S., Srirama, S.N. (eds) Intelligent Systems. Lecture Notes in Networks and Systems, vol 185. Springer, Singapore. https://doi.org/10.1007/978-981-33-6081-5_8

Download citation

Publish with us

Policies and ethics