Skip to main content

Low-Cost Nanoparticles for Remediation of Arsenic Contaminated Water and Soils

  • Chapter
  • First Online:
Arsenic Toxicity: Challenges and Solutions

Abstract

Arsenic is considered a threat to human and ecosystem due to its serious impacts on soil and water. Nanotechnology is a promising approach that offers significant opportunities to develop green, sturdy, and economic approaches for remediation of arsenic contaminated water and soil. Because nanomaterials possess high specific surface area and reactivity, its use in water treatment applications has shown great success in overcoming the restrictions of conventional treatment technology. The current chapter deals with the green, low-cost, and easily accessible nanosorbents that are used for arsenic removal from contaminated water such as green cellulose nanocrystals, iron oxides/hydroxide nanoparticles, green magnetic nanoparticles, biochar magnetic nanocomposites, and nanoparticles derived from industrial and agricultural wastes. Adsorption mechanisms responsible for arsenic removal by waste-based adsorbents have been discussed. The green synthesis of nanosorbents using natural and abundant bio-materials as well as surface modification and functionalization to overcome constraints associated with sorbents derived from waste materials is also discussed with respect to its potential for water remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbassi R, Ydav AK, Kumar N, Huang S, Jaffe PR (2013) Modeling and optimization of dye removal using “green” clay supported iron nano-particles. Ecol Eng 61:366–370

    Article  Google Scholar 

  • Abdul Khalil H, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawid M (2014) Production andmodification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  PubMed  Google Scholar 

  • Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40:828–846

    Article  PubMed  CAS  Google Scholar 

  • Ahmad Z, Gao B, Mosa A, Yu H, Yin X, Bashir A, Ghoveisi H, Wang S (2018) Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J Clean Prod 180:437–449

    Article  CAS  Google Scholar 

  • Alchouron J, Navarathna C, Chludil HD, Dewage NB, Perez F, Hassan EB, Pittman CU Jr, Vega AS, Mlsna TE (2020) Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic (V) remediation. Sci Total Environ 706:135943

    Article  CAS  PubMed  Google Scholar 

  • Almomani F, Bhosale R, Khraisheh M, Kumar A, Almomani T (2020) Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl Surf Sci 506:144924. https://doi.org/10.1016/j.apsusc.2019.144924

    Article  CAS  Google Scholar 

  • An B, Liang Q, Zhao D (2011) Removal of arsenic (V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Res 45:1961–1972

    Article  CAS  PubMed  Google Scholar 

  • Arancibia-Miranda N, Baltazar SE, García A, Muñoz-Lira D, Sepúlveda P, Rubio MA, Altbir D (2016) Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380

    Article  CAS  PubMed  Google Scholar 

  • Aredes S, Klein B, Pawlik M (2013) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 60:71–76

    Article  CAS  Google Scholar 

  • Attinti R, Sarkar D, Barrett K, Datta R (2015) Adsorption of arsenic (V) from aqueous solutions by goethite/silica nanocomposite. Int J Environ Sci Technol 12:3905–3914

    Article  CAS  Google Scholar 

  • Babu CM, Vinodh R, Sundaravel B, Abidov A, Peng MM, Cha WS, Jang H-T (2016) Characterization of reduced graphene oxide supported mesoporous Fe2O3/TiO2 nanoparticles and adsorption of As (III) and As (V) from potable water. J Taiwan Inst Chem Eng 62:199–208

    Article  CAS  Google Scholar 

  • Baig JA, Kazi TG, Arain MB, Afridi HI, Kandhro GA et al (2009) Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro. Pakistan J Hazard Mater 166:662–669

    Article  CAS  PubMed  Google Scholar 

  • Bakshi S, Banik C, Rathke SJ, Laird DA (2018) Arsenic sorption on zero-valent iron-biochar complexes. Water Res 137:153–163

    Article  CAS  PubMed  Google Scholar 

  • Barakan S, Aghazadeh V, Beyragh AS, Mohammadi S (2020) Thermodynamic, kinetic and equilibrium isotherm studies of As (V) adsorption by Fe (III)-impregnated bentonite. Environ Dev Sustain 22:5273–5295

    Article  Google Scholar 

  • Barbash VA, Yashchenko OV (2020) Preparation and application of nanocellulose from non-wood plants to improve the quality of paper and cardboard. Appl Nanosci 10:2705–2716. https://doi.org/10.1007/s13204-019-01242-8

    Article  CAS  Google Scholar 

  • Baruah J, Chaliha C, Kalita E, Nath BK, Field RA, Deb P (2020) Modelling and optimization of factors influencing adsorptive performance of agrowaste-derived nanocellulose iron oxide nanobiocomposites during remediation of Arsenic contaminated groundwater. Int J Biol Macromol 164:53–65

    Article  CAS  PubMed  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual treated soil: key concepts and metal bioavailability. J Environ Qual 34:49–63

    Article  CAS  PubMed  Google Scholar 

  • Bibi M, Hashmi MZ, Malik RN (2015) Human exposure to arsenic in groundwater from Lahore district, Pakistan. Environ Toxicol Pharmacol 39:42–52

    Article  CAS  PubMed  Google Scholar 

  • Bilici Baskan M, Pala A (2010) A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 254:42–48

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  • Blissett RS, Rowson NA (2012) A review of the multi-component utilization of coal fly ash. Fuel 97:1–23

    Article  CAS  Google Scholar 

  • Bujňáková Z, Baláž P, Zorkovská A, Sayagués M, Kováč J, Timko M (2013) Arsenic sorption by nanocrystalline magnetite: an example of environmentally promising interface with geosphere. J Hazard Mater 262:1204–1212

    Article  PubMed  CAS  Google Scholar 

  • Byungryul A, Zhao D (2012) Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. J Hazard Mater 211:332–341

    Google Scholar 

  • Caporale AG, Violante A (2016) Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr Pollution Rep 2:15–27

    Article  CAS  Google Scholar 

  • Catalano JG, Park C, Fenter P, Zhang Z (2008) Simultaneous inner and outer sphere arsenate adsorption on corundum and hematite. Geochim Cosmochim Acta 72:1986–2004

    Article  CAS  Google Scholar 

  • Caussy D (2003) Case studies of the impact of understanding bioavailability: arsenic. Ecotoxicol Environ Saf 56:164–173

    Article  CAS  PubMed  Google Scholar 

  • Chai F, Wang R, Yan L, Li G, Cai Y, Xi C (2020) Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient As (V) removal. Carbohydr Polym 245:116511

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111(9):1194–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Chatterjee A, Das D et al (2017) Groundwater arsenic contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111:1194–1201

    Article  CAS  Google Scholar 

  • Chakraborty A, Sengupta A, Bhadu MK, Pandey A, Mondal A (2014) Efficient removal of arsenic (V) from water using steel-making slag. Water Environ Res 86(6):524–531. https://doi.org/10.2175/106143014X13975035524907

    Article  CAS  PubMed  Google Scholar 

  • Chammui Y, Sooksamiti P, Naksata W, Thiansem S, Arqueropanyo O-A (2014) Removal of arsenic from aqueous solution by adsorption on Leonardite. Chem Eng J 240:202–210

    Article  CAS  Google Scholar 

  • Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano JH, Ahsan H (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239(2):184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HK, Sunil K, Sharma SK, Sharma PR, Yeh H, Johnson K, Hsiao BS (2019) Arsenic (III) removal by nanostructured dialdehyde cellulose—cysteine microscale and nanoscale fibers. ACS Omega 4:22008–22020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK et al (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrysochoou M, Johnson CP, Dahal G (2012) A comparative evaluation of hexa-valent chromium treatment in contaminated soil by calcium polysulfide and green tea nanoscale zero-valent iron. J Hazard Mater 43:5243–5251

    Google Scholar 

  • Creamer AE, Gao B (2016) Carbon-based adsorbents for post combustion CO2capture: a critical review. Environ Sci Technol 50:7276–7289

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Jin Q, Li Y, Li F (2019) Oxidation and removal of As (III) from soil using novel magnetic nanocomposite derived from biomass waste. Environ Sci Nano 6:478

    Article  CAS  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 2014:1–14

    Article  CAS  Google Scholar 

  • Deedar N, Aslam I (2009) Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J Environ Sci 21:402–408

    Article  CAS  Google Scholar 

  • Deng S, Li Z, Huang J, Yu G (2010) Preparation, characterization and application of a Ce–Ti oxide adsorbent for enhanced removal of arsenate from water. J Hazard Mater 179:1014–1021

    Article  CAS  PubMed  Google Scholar 

  • Duru İ, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51:6097–6116

    Article  CAS  Google Scholar 

  • Elkhatib EA, Moharem ML (2015) Immobilization of copper, lead, and nickel in two arid soils amended with biosolids: effect of drinking water treatment residuals. J Soil Sediment 15:1937–1946

    Article  CAS  Google Scholar 

  • Elkhatib EA, Mahdy AM, ElManeah MM (2013) Effects of drinking water treatment residuals on nickel retention in soils: a macroscopic and thermodynamic study. J Soil Sediment 13:94–105

    Article  CAS  Google Scholar 

  • Elkhatib E, Mahdy A, Salama K (2015a) Green synthesis of water treatment residual nanoparticles using precision milling. Environ Chem Lett 13:333–339

    Article  CAS  Google Scholar 

  • Elkhatib E, Mahdy A, Sherif F, Hamadeen H (2015b) Evaluation of a novel water treatment residual nanoparticles as a sorbent for arsenic removal. J Nanomater 2015:1–12

    Article  CAS  Google Scholar 

  • Elkhatib E, Mahdy A, Sherif F, Elshemy W (2016) Competitive adsorption of cadmium (II) from aqueous solutions onto nanoparticles of water treatment residual. J Nanomater 2016:1–12

    Article  CAS  Google Scholar 

  • Elkhatib E, Moharem M, Mahdy AM, Mesalem M (2017) Sorption, release and forms of mercury in contaminated soils stabilized with water treatment residual. Land Degrad Dev 28:752–761

    Article  Google Scholar 

  • Elkhatib EA, Sherif F, Kandil M, Mahdy A, Moharem M, Al-Basry A (2018) Using nanoparticles from water treatment residuals to reduce the mobility and phytoavailability of Cd and Pb in biosolid-amended soils. Environ Geochem Health 40:1573–1584. https://doi.org/10.1007/s10653-018-0072-5

    Article  CAS  PubMed  Google Scholar 

  • Elkhatib E, Moharem M, Hamadeen H (2019) Low-cost and efficient removal of mercury from contaminated water by novel nanoparticles from water industry waste. Desalin Water Treat 144:79–88

    Article  CAS  Google Scholar 

  • Elkhatib E, Moharem M, Mahmoud A (2020) Low cost nanoparticles derived from nitrogen fertilizer industry waste for the remediation of copper contaminated soil and water. Environ Eng Res 25(6):930–937

    Article  Google Scholar 

  • Es-sahbany H, Berradi M, Nkhili S, Hsissou R, Allaoui M, Loutfi M, Bassir D, Belfaquir M, El Youbi M (2019) Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Mater Today: Proc 13:866–875

    CAS  Google Scholar 

  • Fan X, Chang DW, Chen X, Baek J-B, Dai L (2016) Functionalized graphene nanoplatelets from ball milling for energy applications. Curr Opin Chem Eng 11:52–58

    Article  Google Scholar 

  • Fang L, Min XY, Kang RF et al (2018) A critical review on arsenic removal from water using iron-based adsorbents. Sci Total Environ 2018(639):110–117

    Article  CAS  Google Scholar 

  • Fatmi Z, Azam I, Ahmed F, Kazi A, Gill AB, Kadir MM, Ahmed M, Ara N, Janjua NZ, Core Group for Arsenic Mitigation in Pakistan (2009) Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source? Environ Res 109:575–581

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446

    Article  PubMed  CAS  Google Scholar 

  • Francesconi KA, Kuehnelt D (2002) In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 51–94

    Google Scholar 

  • Freitas ET, Stroppa DG, Montoro LA, de Mello JW, Gasparon M, Ciminelli VS (2016) Arsenic entrapment by nanocrystals of Al-magnetite: the role of Al in crystal growth and As retention. Chemosphere 158:91–99

    Article  CAS  PubMed  Google Scholar 

  • Fukushi K, Sverjensky DA (2007) A predictive model (ETLM) for arsenate adsorption and surface speciation on oxides consistent with spectroscopic and theoretical molecular evidence. Geochim Cosmochim Acta 71:3717–3745

    Article  CAS  Google Scholar 

  • Garau G, Silvetti M, Castaldi P, Mele E, Deiana P, Deiana S (2014) Stabilising metal (loid) s in soil with iron and aluminium-based products: microbial, biochemical and plant growth impact. J Environ Manage 139:146–153

    Article  CAS  PubMed  Google Scholar 

  • Gerard N, Krishnan RS, Ponnusamy SK, Cabana H, Vaidyanathan VK (2016) Adsorptive potential of dispersible chitosan coated iron-oxide nanocomposites toward the elimination of arsenic from aqueous solution. Process Saf Environ Prot 104:185–195

    Article  CAS  Google Scholar 

  • Glocheux Y, Pasarín MM, Albadarin AB, Allen S, Walker G (2013) Removal of arsenic from groundwater by adsorption onto an acidified laterite by-product. Chem Eng J 228:565–574

    Article  CAS  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234(1):204–216

    Article  CAS  PubMed  Google Scholar 

  • Gorrasi G, Sorrentino A (2015) Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem 17:2610–2625

    Article  CAS  Google Scholar 

  • Guan X, Meng X, Sun Y, Sun B et al (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 221:303–303

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M (2011) Removal of the hazardous dye tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C 31:1062–1067

    Article  CAS  Google Scholar 

  • Harini K, Ramya K, Sukumar M (2018) Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydr Polym 201:329–339

    Article  CAS  PubMed  Google Scholar 

  • Haw CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. J Ceram Int 36:1417–1422

    Article  CAS  Google Scholar 

  • Hering JG, Katsoyiannis IA, Ahumada Theoduloz G, Berg M, Hug SJ (2017) Arsenic removal from drinking water: experiences with technologies and constraints in practice. J Environ Eng 143:1–1

    Article  CAS  Google Scholar 

  • Hocaoglu S, Wakui Y, Suzuki T (2019) Separation of arsenic (V) by composite adsorbents of metal oxide nanoparticles immobilized on silica flakes and use of adsorbent coated alumina tubes as an alternative method. J Water Process Eng 27:134–142

    Article  Google Scholar 

  • Huang P, Zhao PY, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8(6):3753–3759

    Article  CAS  PubMed  Google Scholar 

  • Iven A, Stankovic M, Manojlovic D, Roglic D (2016) Microwave-hydrothermal method for the synthesis of composite materials for removal of arsenic from water. Enviorn Sci Pollut Res 23:469–476

    Article  CAS  Google Scholar 

  • Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34(17):4304–4312

    Article  CAS  Google Scholar 

  • Jain A, Raven KP, Loeppert RH (1999) Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH-release stoichiometry. Environ Sci Technol 33:1179–1184

    Article  CAS  Google Scholar 

  • Jais FM, Ibrahim S, Yoon Y, Jang M (2016) Enhanced arsenate removal by lan-thanum and nano-magnetite composite incorporated palm shell-waste basedactivated carbon. Sep Purif Technol 169:93–102

    Article  CAS  Google Scholar 

  • Jegadeesan G, Al-Abed SR, Sundaram V, Choi H, Scheckel KG, Dionysiou DD (2010) Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. Water Res 44:965–973

    Article  CAS  PubMed  Google Scholar 

  • Jing C, Calvache E, Jiang G (2009) Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environ Pollut 157:2514–2519

    Article  CAS  PubMed  Google Scholar 

  • Jones F (2007) A broad view of arsenic. Poult Sci 86:2–14

    Article  CAS  PubMed  Google Scholar 

  • Kalaruban M, Loganathan P, Nguyen TV, Nur T, Johir MAH, Nguyen TH, Trinh MV, Vigneswaran S (2019) Iron-impregnated granular activated carbon for arsenic removal: application to practical column filters. J Environ Manage 239:235–243

    Article  CAS  PubMed  Google Scholar 

  • Kanel S, Choi H (2017) Removal of arsenic from groundwater by industrial byproducts and its comparison with zero-valent iron. J Hazard Toxic Radioactive Waste 21:04016028

    Article  Google Scholar 

  • Kardam A, Rohit RK, Srivastava S (2012) Novel nano cellulosic fibers for remediation of heavy metals from synthetic water. IJND 3:155–162

    Google Scholar 

  • Karimi P, Javanshir S, Sayadi MH, Arabyarmohammadi H (2019) Arsenic removal from mining effluents using plant-mediated, green-synthesized iron nanoparticles. Processes 7(10):759

    Article  CAS  Google Scholar 

  • Karunanayake AG, Todd OA, Crowley ML, Ricchetti LB, Pittman CU Jr, Anderson R, Mlsna TE (2017) Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir. Chem Eng J 319:75–88

    Article  CAS  Google Scholar 

  • Karunanayake AG, Navarathna CM, Gunatilake SR, Crowley M, Anderson R, Mohan D, Perez F, Pittman CU Jr, Mlsna T (2019) Fe3O4 nanoparticles dispersed on Douglas fir biochar for phosphate sorption. ACS Applied Nano Materials 2:3467–3479

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Kim HK, Jeong S-W, Yang JE, Choi YJ (2019) Highly efficient and stable removal of arsenic by live cell fabricated magnetic nanoparticles. Int J Mol Sci 20:3566

    Article  CAS  PubMed Central  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 44:3358–3393

    Article  CAS  Google Scholar 

  • Kong S, Wang Y, Hu QH, Olusegun AK (2014) Magnetic nanoscale Fe–Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater. Colloids Surf 457:220–227

    Article  CAS  Google Scholar 

  • Lee S-H, Kim K-W, Lee B-T, Bang S, Kim H et al (2015) Enhanced Arsenate removal performance in aqueous solution by yttrium-based adsorbents. Int J Environ Res Public Health 2015(12):13523–13541

    Article  CAS  Google Scholar 

  • Leshuk T, Holmes AB, Ranatunga D, Chen PZ, Jiang Y, Gu F (2018) Magnetic flocculation for nanoparticle separation and catalyst recycling. Environ Sci Nano 5:509–519

    Article  CAS  Google Scholar 

  • Li Y, Liu JR, Jia SY, Guo JW, Zhuo J, Na P (2012) TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chem Eng J 191:66–74

    Article  CAS  Google Scholar 

  • Li S, Wang W, Liu Y, Zhang W (2014) Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration. Chem Eng J 254:115–123

    Article  CAS  Google Scholar 

  • Li R, Wang JJ, Zhang Z, Awasthi MK, Du D, Dang P, Huang Q, Zhang Y, Wang L (2018) Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling. Sci Total Environ 642:526–536

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hashimoto Y, Riya S, Terada A, Hou H, Shibagaki Y, Hosomi M (2019) Removal and immobilization of heavy metals in contaminated soils by chlorination and thermal treatment on an industrial-scale. Chem Eng J 359:385–392

    Article  CAS  Google Scholar 

  • Li R, Zhang Y, Deng H, Zhang Z, Wang JJ, Shaheen SM, Xiao R, Rinklebe J, Xi B, He X (2020) Removing tetracycline and Hg (II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. J Hazard Mater 384:121095

    Article  CAS  PubMed  Google Scholar 

  • Liphadzi M, Kirkham M (2006) Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. S Afr J Bot 72:391–397

    Article  CAS  Google Scholar 

  • Liu YY, Leus K, Grzywa M, Weinberger D, Strubbe K et al (2012) Synthesis, structural characterization, and catalytic performance ofa vanadium-based metal-organic framework (COMOC-3). Eur J Inorg Chem 2012:2819–2827

    Article  CAS  Google Scholar 

  • Liu H, Zuo K, Vecitis CD (2014) Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ Sci Technol 48:13871–13879

    Article  CAS  PubMed  Google Scholar 

  • Liu C-H, Chuang Y-H, Chen T-Y, Tian Y, Li H, Wang M-K et al (2015) Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies. Environ Sci Technol 49:13

    Google Scholar 

  • Liu S, Huang B, Chai L, Liu Y, Zeng G, Wang X, Zeng W, Shang M, Deng J, Zhou Z (2017) Enhancement of As (V) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv 7:10891–10900

    Article  CAS  Google Scholar 

  • Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619

    Article  CAS  Google Scholar 

  • Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172

    Article  CAS  Google Scholar 

  • Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    Article  CAS  Google Scholar 

  • Luther S, Borgfeld N, Kim J, Parsons J (2012) Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchem J 101:30–36

    Article  CAS  Google Scholar 

  • Lyu H, Gao B, He F, Zimmerman AR, Ding C, Huang H, Tang J (2018) Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environ Pollut 233:54–63

    Article  CAS  PubMed  Google Scholar 

  • Lyu H, Xia S, Tang J, Zhang Y, Gao B, Shen B (2020) Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+. J Hazard Mater 384:121357

    Article  CAS  PubMed  Google Scholar 

  • Machado S, Pinto S, Grosso J, Nouws H, Albergaria JT, Delerue-Matos C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445:1–8

    Article  PubMed  CAS  Google Scholar 

  • Majumder A, Ramrakhiani L, Mukherjee D (2019) Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. Clean Tech Environ Policy 21:1–19

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Manquián-Cerda K, Cruces E, Rubio MA, Reyes C, Arancibia-Miranda N (2017) Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: reactivity, characterization and removal mechanism of arsenate. Ecotoxicol Environ Saf 145:69–77

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Cabanas M, López-García BML, Manuel RH, de Vicente ES (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem Eng J 301:83–91

    Article  CAS  Google Scholar 

  • McCann CM, Peacock CL, Hudson-Edwards KA, Shrimpton T, Gray ND (2018) In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. J Hazard Mater 342:724–731

    Article  CAS  PubMed  Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144:51–61

    Article  CAS  PubMed  Google Scholar 

  • Miandad R, Barakat MA, Rehan M, Aburiazaiza AS, Ismail IMI, Nizami AS (2017) Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Manag 69:66–78

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949–978

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  PubMed  Google Scholar 

  • Moharem M, Elkhatib E, Mesalem M (2019) Remediation of chromium and mercury polluted calcareous soils using nanoparticles: sorption–desorption kinetics, speciation and fractionation. Environ Res 170:366–373

    Article  CAS  PubMed  Google Scholar 

  • Mólgora CC, Domínguez AM, Avila EM, Drogui P, Buelna G (2013) Removal of arsenic from drinking water: a comparative study between electrocoagulation-microfiltration and chemical coagulation-microfiltration processes. Sep Purif Technol 118:645–651

    Article  CAS  Google Scholar 

  • Mukherjee D, Ghosh S, Majumdar S, Annapurna K (2016) Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J Environ Chem Eng 4:639–650

    Article  CAS  Google Scholar 

  • Muloin T, Dudas MJ (2005) Aqueous phase arsenic in weathered shale enriched in native arsenic. J Environ Eng Sci 4:461–468

    Article  CAS  Google Scholar 

  • Nagar R, Sarkar D, Punamiya P, Datta R (2015) Drinking water treatment residual amendment lowers inorganic arsenic bioaccessibility in contaminated soils: a long-term study. Water Air Soil Pollut 226:366

    Article  CAS  Google Scholar 

  • Naghdi M, Taheran M, Brar SK, Rouissi T, Verma M, Surampalli RY, Valero JR (2017) A green method for production of nanobiochar by ball milling-optimization and characterization. J Clean Prod 164:1394–1405

    Article  CAS  Google Scholar 

  • Nath B, Chaliha C, Kalita E, Kalita M (2016) Synthesis and characterization of ZnO: CeO2: nanocellulose: PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydr Polym 148:397–405

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1999) Arsenic in drinking water. National Academy Press, Washington, pp 27–82

    Google Scholar 

  • Navarathna CM, Karunanayake AG, Gunatilake SR, Pittman CU Jr, Perez F, Mohan D, Mlsna T (2019) Removal of Arsenic (III) from water using magnetite precipitated onto Douglas fir biochar. J Environ Manage 250:109429

    Article  CAS  PubMed  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25

    Article  CAS  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Nickson R, McArthur J, Ravenscroft P, Burgess W, Ahmed K (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  • Nikić J, Tubić A, Watson M, Maletić S, Šolić M, Majkić T, Agbaba J (2019) Arsenic removal from water by green synthesized magnetic nanoparticles. Watermark 11:2520

    Article  CAS  Google Scholar 

  • Niu H, Wang J, Shi Y, Cai Y, Wei F (2009) Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method. Microporous Mesoporous Mater 122:28–35

    Article  CAS  Google Scholar 

  • Oh C, Rhee S, Oh M, Park J (2012) Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. J Hazard Mater 213–214:147–155. https://doi.org/10.1016/j.jhazmat.2012.01.074

    Article  CAS  PubMed  Google Scholar 

  • Pal P, Chakrabortty S, Linnanen L (2014) A nanofiltration–coagulation integrated system for separation and stabilization of arsenic from groundwater. Sci Total Environ 476–477:601–610

    Article  PubMed  CAS  Google Scholar 

  • Palansooriya KN, Yang Y, Tsang YF, Sarkar B, Hou D, Cao X, Meers E, Rinklebe J, Kim K-H, Ok YS (2020) Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review. Crit Rev Environ Sci Technol 50:549–611

    Article  CAS  Google Scholar 

  • Pathan S, Bose S (2018) Arsenic removal using “green” renewable feedstock-based hydrogels: current and future perspectives. ACS Omega 3:5910–5917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena M, George P, Jing C (2006) Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Enviorn Sci Technol 40:1257–1262

    Article  CAS  Google Scholar 

  • Pillai P, Lakhtaria Y, Khalid M, Dharaskar S (2019) Synthesis, characterization, and application of iron oxy hydroxide coated with rice husk for fluoride removal from aqueous media. Environ Sci Pollut Res 2019:1–14

    Google Scholar 

  • Poguberović SS, Krčmar DM, Maletić SP, Kónya Z, Pilipović DDT, Kerkez DV, Rončević SD (2016) Removal of As (III) and Cr (VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng 90:42–49

    Article  Google Scholar 

  • Pott WA, Benjamin SA, Yang RSH (2001) Reviews of environmental contamination and toxicology, vol 169. Springer, New York, p 165

    Book  Google Scholar 

  • Pranudta A, Klysubun W, El-Moselhy MM, Padungthon S (2020) Synthesis optimization and X-ray absorption spectroscopy investigation of polymeric anion exchanger supported binary Fe/Mn oxides nanoparticles for enhanced As (III) removal. React Funct Polym 147:104441

    Article  CAS  Google Scholar 

  • Prasad KS, Gandhi P, Selvaraj K (2014) Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As (V) from aqueous solution. Appl Surf Sci 317:1052–1059

    Article  CAS  Google Scholar 

  • Prathna T, Sharma SK, Kennedy M (2018) Application of iron oxide and iron oxide/alumina nanocomposites for arsenic and fluoride removal: A comparative study. Int J Theor Appl Nanotechnol 6:1–4

    CAS  Google Scholar 

  • Qian L, Chen B (2013) Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environ Sci Technol 47:8759–8768

    CAS  PubMed  Google Scholar 

  • Qian L, Zhang W, Yan J, Han L, Gao W, Liu R, Chen M (2016) Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures. Bioresour Technol 206:217–224

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828

    Article  CAS  Google Scholar 

  • Rakibuddin M, Kim H (2020) Sol-gel derived Fe3O4 quantum dot decorated silica composites for effective removal of arsenic (III) from water. Mater Chem Phys 240:122245

    Article  CAS  Google Scholar 

  • Roy P, Choudhury M, Ali M (2013) As (III) and As (V) adsorption on magnetite nanoparticles: adsorption isotherms, effect of PH and phosphate, and adsorption kinetics. Int J Des 4(1):17

    Google Scholar 

  • Sadeghi M, Irandoust M, Khorshidi F, Feyzi M, Jafari F, Shojaeimehr T, Shamsipur M (2016) Removal of Arsenic (III) from natural contaminated water using magnetic nanocomposite: kinetics and isotherm studies. J Iran Chem Soc 13:1175–1188

    Article  CAS  Google Scholar 

  • Saif M, Aboul-Fotouh SMK, El-Molla SA, Ibrahim MM, Ismail LFM (2014) Nanotechnology for sustainable development. J Nanopart Res 15:149–158

    Google Scholar 

  • Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13

    Article  CAS  Google Scholar 

  • Samadder SR (2011) Impact of arsenic pollution on spatial distribution of human development index. KSCE J Civ Eng 15:975–982

    Article  Google Scholar 

  • Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation—a critical review. Chemosphere 158:37–49

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Makris KC, Vandanapu V, Datta R (2007) Arsenic immobilization in soils amended with drinking-water treatment residuals. Environ Pollut 146:414–419

    Article  CAS  PubMed  Google Scholar 

  • Scheckel KG, Sparks DL (2001) Temperature effects on nickel sorption kinetics at the mineral–water interface. Soil Sci Soc Am J 65:719–728

    Article  CAS  Google Scholar 

  • Sepúlveda P, Rubio MA, Baltazar SE, Rojas-Nunez J, Llamazares JS, Garcia AG, Arancibia-Miranda N (2018) As (V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: the influence of Cu content and morphologic changes in bimetallic nanoparticles. J Colloid Interface Sci 524:177–187

    Article  PubMed  CAS  Google Scholar 

  • Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9:2479–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan D, Deng S, Zhao T, Wang B, Wang Y, Huang J, Yu G, Winglee J, Wiesner MR (2016) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater 305:156–163

    Article  CAS  PubMed  Google Scholar 

  • Sherman DM, Randall SR (2003) Surface complexation of arsenic (V) to iron (III)(hydr) oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67:4223–4230

    Article  CAS  Google Scholar 

  • Shih YJ, Huang RL, Huang YH (2015) Adsorptive removal of arsenic using a novel akhtenskite coated waste Goethite. J Clean Prod 87:897–905

    Article  CAS  Google Scholar 

  • Shwe WM, Oo MM, Hlaing SS (2012) Preparation of iron oxide nanoparticles mixed with calcinated laterite for arsenic removal. In: International conference on chemical engineering and its applications (ICCEA’2012), Sept 8–9, Bangkok

    Google Scholar 

  • Simeonova V (2000) Pilot study for arsenic removal. Water Supply 18:636–640

    CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith AH, Smith MMH (2004) Arsenic drinking water regulations in developing countries with extensive exposure. Toxicology 198:39–44

    Article  CAS  PubMed  Google Scholar 

  • Song J, Zhang F, Huang Y, Keller AA, Tang X, Zhang W, Jia W, Santos J (2018) Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environ Sci Nano 5:1341–1349

    Article  CAS  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  • Stüben D, Berner Z, Chandrasekharam D, Karmakar J (2003) Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Appl Geochem 18:1417–1434

    Article  CAS  Google Scholar 

  • Stumm W (1992) Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. Wiley, New York

    Google Scholar 

  • Sun Y, Iris K, Tsang DC, Cao X, Lin D, Wang L, Graham NJ, Alessi DS, Komárek M, Ok YS (2019) Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environ Int 124:521–532

    Article  CAS  PubMed  Google Scholar 

  • Taleb K, Markovski J, Veličković Z, Rusmirović J, Rančić M, Pavlović V, Marinković A (2019) Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size. Arab J Chem 12:4675–4693

    Article  CAS  Google Scholar 

  • Tian Y, Wu M, Lin X, Huang P, Huang Y (2011) Synthesis of magnetic wheat straw for arsenic adsorption. J Hazard Mater 193:10–16

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Shi Z, Lu Y, Dohnalkova AC, Lin Z, Dang Z (2017) Kinetics of cation and oxyanion adsorption and desorption on ferrihydrite: roles of ferrihydrite binding sites and a unified model. Environ Sci Technol 51:10605–10614

    Article  CAS  PubMed  Google Scholar 

  • Tondel M, Rahman M, Magnuson A, Chowdhury IA, Faruquee MH, Ahmad SA (1999) The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect 107:727–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tresintsi S, Simeonidis K, Vourlias G, Stavropoulos G, Mitrakas M (2012) Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe (II) oxidation–precipitation parameters. Water Res 46:5255–5267

    Article  CAS  PubMed  Google Scholar 

  • Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:616–632

    Article  CAS  PubMed  Google Scholar 

  • Türk T, Alp İ (2014) Arsenic removal from aqueous solutions with Fe-hydrotalcite supported magnetite nanoparticle. J Ind Eng Chem 20:732–738

    Article  CAS  Google Scholar 

  • Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As (V) adsorption on maghemite nanoparticles. J Hazard Mater 166:1415–1420

    Article  PubMed  CAS  Google Scholar 

  • USEPA (2001) National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminant monitoring. United States Environmental Protection Agency

    Google Scholar 

  • Ventura-Lima J, Bogo MR, Monserrat JM (2011) Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicol Environ Saf 74:211–218

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu W, Wang T, Ni J (2015) Arsenate adsorption onto Fe-TNTs prepared by a novel water–ethanol hydrothermal method: mechanism and synergistic effect. J Colloid Interface Sci 440:253–262

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang P, Wang H, Dong J, Chen W, Wang X, Wang S, Hayat T, Alsaedi A, Wang X (2017a) Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium (VI). ACS Sustain Chem Eng 5:7165–7174

    Article  CAS  Google Scholar 

  • Wang S, Gao B, Li Y, Creamer AE, He F (2017b) Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. J Hazard Mater 322:172–181

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Gao B, Wan Y (2019) Comparative study of calcium alginate, ball-milled biochar, and their composites on aqueous methylene blue adsorption. Environ Sci Pollut Res 26:11535–11541

    Article  CAS  Google Scholar 

  • Weng X, Huang L, Chen Z, Megharaj M, Naidu R (2013) Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind Crop Prod 51:342–347

    Article  CAS  Google Scholar 

  • WHO (2001) Arsenic and arsenic compounds (environmental health criteria), 2nd edn. World Health Organization, International Programme on Chemical Safety, Geneva

    Google Scholar 

  • Wong W, Wong H, Badruzzaman ABM, Goh H, Zaman M (2016) Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Nanotechnology 28:042001

    Article  PubMed  CAS  Google Scholar 

  • Wong WW, Wong HY, Borhan A, Badruzzaman M, Goh HH, Zaman M (2017) Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Nanotechnology 2017(28):1–31

    Google Scholar 

  • Wu Q, Cui Y, Li Q et al (2015) Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J Hazard Mater 283:748–754

    Article  CAS  PubMed  Google Scholar 

  • Xiang B, Ling D, Lou H, Gu H (2017) 3D hierarchical flower-like nickel ferrite/manganese dioxide toward lead (II) removal from aqueous water. J Hazard Mater 325:178–188

    Article  CAS  PubMed  Google Scholar 

  • Xiang W, Zhang X, Chen K, Fang J, He F, Hu X, Tsang DC, Ok YS, Gao B (2020) Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chem Eng J 385:123842

    Article  CAS  Google Scholar 

  • Xiong X, Iris K, Tsang DC, Bolan NS, Ok YS, Igalavithana AD, Kirkham M, Kim K-H, Vikrant K (2019) Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chem Eng J 375:121983

    Article  CAS  Google Scholar 

  • Yaghi N, Hartikainen H (2018) Effect of oxide coatings, pH and competing anion on the sorption of arsenic species onto Light Expanded Clay Aggregates (LECA’s). Environ Technol Innov 9:30–37

    Article  Google Scholar 

  • Yang D, Peng X-W, Zhong L-X, Cao X-F, Chen W, Sun R-C (2013) Effects of pretreatments on crystalline properties and morphology of cellulose nanocrystals. Cellul 20:2427–2437

    Article  CAS  Google Scholar 

  • Yang Q, Li Z, Lu X et al (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  PubMed  Google Scholar 

  • Yean S, Cong L, Yavuz CT, Mayo J, Yu W, Kan A, Colvin V, Tomson M (2005) Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res 20:3255–3264

    Article  CAS  Google Scholar 

  • Yenial Ü, Bulut G, Pagnanelli F (2019) Manganese ferrite nanoparticle production from industrial wastes as sorbent material for arsenic removal from aqueous solutions. Part Sci Technol 38:433–442

    Article  CAS  Google Scholar 

  • Yoo SS (2018) Operating cost reduction of in-line coagulation/ultrafiltration membrane process attributed to coagulation condition optimization for irreversible fouling control. Watermark 10:1076

    Article  CAS  Google Scholar 

  • Yoo J-C, Beiyuan J, Wang L, Tsang DC et al (2018) A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Sci Total Environ 616:572–582

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943

    Article  CAS  Google Scholar 

  • Yusoff MS, Aziz HA, Zamri MFMA, Abdullah AZ, Basri NEA (2018) Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment. Waste Manag 74:362–372

    Article  CAS  PubMed  Google Scholar 

  • Zeng L (2003) A method for preparing silica-containing iron (III) oxide adsorbents for arsenic removal. Water Res 37:4351–4358

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Singh P, Paling E, Delides S (2004) Arsenic removal from contaminated water by natural iron ores. Miner Eng 17:517–524

    Article  CAS  Google Scholar 

  • Zhang L, Tsuzuki T, Wang X (2010) Preparation and characterization on cellulose nanofiber film. Mater Sci Forum 654–656:1760–1763

    Article  CAS  Google Scholar 

  • Zhang W, Liu C, Wang L, Zheng T, Ren G, Li J, Ma J, Zhang G, Song H, Zhang Z (2019a) Novel nanostructured Fe-Ti-Mn composite oxide for highly efficient arsenic removal: preparation and performance evaluation. Colloids Surf A Physicochem Eng Asp 561:364–372

    Article  CAS  Google Scholar 

  • Zhang Y, Fan J, Fu M, Ok YS, Hou Y, Cai C (2019b) Adsorption antagonism and synergy of arsenate (V) and cadmium (II) onto Fe-modified rice straw biochars. Environ Geochem Health 41:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang L, Cheng Z (2015) Removal of organic pollutants from aqueous solution using agricultural wastes: a review. J Mol Liq 212:739–762

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elkhatib, E., Moharem, M., Hamadeen, H., Mesalem, M. (2021). Low-Cost Nanoparticles for Remediation of Arsenic Contaminated Water and Soils. In: Kumar, N. (eds) Arsenic Toxicity: Challenges and Solutions. Springer, Singapore. https://doi.org/10.1007/978-981-33-6068-6_9

Download citation

Publish with us

Policies and ethics