Skip to main content

Current Scenario of Groundwater Arsenic Contamination in West Bengal and Its Mitigation Approach

  • Chapter
  • First Online:
Arsenic Toxicity: Challenges and Solutions

Abstract

Arsenic is found in minerals of earth crust in variable concentration throughout different geographical concentration. Leaching of arsenic from earth crust cause groundwater arsenic contamination. It was found in variable organic and inorganic form known as arsenate and arsenite compounds. Groundwater arsenic concentration were very high in Ganga-Meghna and Brahmaputra plain, it was very high in Bangladesh. In 1983 the first report on groundwater arsenic contamination was highlighted. After that many research scientists worked there, but research findings of Dr. Dipankar Chakraborti and Dr. Guha Majumdar have significant contribution in awareness and detection of groundwater arsenic contamination in West Bengal. They have even highlighted effect of groundwater contamination on Public health of West Bengal. West Bengal is severely affected with arsenic contamination and now reports on crop contamination are alarming. According to 2006 reports only 6 districts are arsenic contaminated out of total 18 districts. While according to 2016 reports 9 districts were reported with high level of arsenic contamination in Bengal. Still it was found in new areas. Severe arsenic contaminated districts are Malda, Murshidabad, Nadia, Howrah, Bardhaman, Hoogley, North and South 24 Pargana. Severe health hazards were reported in these districts including skin pigmentation, arsenicosis, peripheral vascular disease, blackfoot disease, skin lesions, and cancer. Many types of mitigation approaches were practiced from last three decades in West Bengal including traditional methods of rainwater harvesting, dug well, deep tube well, and surface water use, but all have limitations and not found very much suitable for rural household uses. Government of West Bengal supplies treated Ganga water in many villages as arsenic remedial measures. Government also puts some deep tube well below 150 m in many villages for providing safe drinking water to rural people at community level. These techniques are very costly and not feasible at household level. Many technologies were tried including oxidation method, coagulation-flocculation method, and adsorption techniques for removal of arsenic from groundwater but they also have some limitations. In current scenario adsorption techniques using oxy hydroxides and iron hydroxides dominate the current market in West Bengal. Use of biological arsenic removal techniques through microbes is advancing scope in development of future arsenic mitigation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhyankar LN, Jones MR, Guallar E, Navas-Acien A (2012) Arsenic exposure and hypertension: a systematic review. Environ Health Perspect 120(4):494–500

    Article  CAS  PubMed  Google Scholar 

  • Ahmed F, Rahman M (2003) Low-cost water supply technologies. In: Ahmed F, Rahman M (eds) Water supply & sanitation: rural and low income urban communities. ITN-Bangladesh, Dhaka, pp 407–441

    Google Scholar 

  • Ahmed MF, Shamsuddin SAJ, Mahmud SG, Rashid H, Deere D, Howard G (2005) Risk assessment of arsenic mitigation options (RAAMO). APSU, Dhaka

    Google Scholar 

  • Ahmed S, Gilerson A, Zhou J, Chowdhary J, Ioannou I, Amin R, Gross B, Moshary F (2006) Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters. In: Remote sensing of the marine environment, 13 Nov 2006, vol 6406. Proceedings SPIE, Goa, p 64060A. https://doi.org/10.1117/12.694177

    Chapter  Google Scholar 

  • Akay C, Thomas C, Gazitt Y (2004) Arsenic trioxide and paclitaxel induce apoptosis by different mechanisms. Cell Cycle 3(3):324–334

    Article  CAS  PubMed  Google Scholar 

  • Amundson SA, Myers TG, Fornace AJ (1998) Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17(25):3287–3299

    Article  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bajpai S, Chaudhuri M (1999) Removal of arsenic from ground water by manganese dioxide–coated sand. J Environ Eng 125(8):782–784

    Article  CAS  Google Scholar 

  • Bamwsp, Dfid, and Wab (2001) Rapid assessment of household level arsenic removal technologies. Phase II Report, Dhaka

    Google Scholar 

  • Bargonetti J, Manfredi JJ (2002) Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14(1):86–91

    Article  CAS  PubMed  Google Scholar 

  • Benbrahim-Tallaa L, Waterland RA, Styblo M, Achanzar WE, Webber MM, Waalkes MP (2005) Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 206(3):288–298

    Article  CAS  PubMed  Google Scholar 

  • Bennett WW, Teasdale PR, Panther JG, Welsh DT, Jolley DF (2010) New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium (IV) using a titanium dioxide based adsorbent. Anal Chem 82(17):7401–7407

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379(2):109–120

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2009) Transfer of arsenic from groundwater and paddy soil to rice plant (Oryza sativa L.): a micro level study in West Bengal, India. World J Agric Sci 5(4):425–431

    CAS  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Banerjee S, Santra SC (2012) In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal, India. J Hazard Mater 262:1091–1097. https://doi.org/10.1016/j.jhazmat.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • British Geological Survey (BGS) and Department of Public Health Engineering (DPHE) (2001) Arsenic contamination of groundwater in Bangladesh. Final report (February 2001). British Geological Survey and Department of Public Health Engineering, Dhaka

    Google Scholar 

  • Centeno JA, Mullick FG, Martinez L et al (2002) Pathology related to chronic arsenic exposure. Environ Health Perspect 110(5):883–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborti D, Sengupta MK, Rahman MM, Ahamed S, Chowdhury UK, Hossain A, Mukherjee SC, Pati S, Saha KC, Dutta RN (2004) Groundwater arsenic contamination and its health effects in the Ganga–Meghna–Brahmaputra plain. J Environ Monit 6(6):74N–83N

    CAS  PubMed  Google Scholar 

  • Chakraborti D, Singh EJ, Das B, Shah BA, Hossain MA, Nayak B, Ahamed S, Singh NR (2008) Groundwater arsenic contamination in Manipur, one of the seven North-Eastern Hill states of India: a future danger. Environ Geol 56(2):381–390

    Article  CAS  Google Scholar 

  • Chakraborti D, Das B, Rahman MM, Chowdhury UK, Biswas B, Goswami AB, Nyak B, Pal A, Sengupta MK, Ahmed S, Hossain A, Basu G, Roychowdhury T, Das D (2009) Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol Nutr Food Res 53(5):542–551

    Article  CAS  PubMed  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36(3):315–361

    Article  CAS  Google Scholar 

  • Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1–3):139–166

    Article  CAS  Google Scholar 

  • Chou W-C, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci U S A 101(13):4578–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher OA, Haque AMM (2012) Arsenic contamination in irrigation water for Rice production in Bangladesh: a review. Trend Appl Sci Res 7:331–349

    Article  CAS  Google Scholar 

  • Crighton D, Wilkinson S, O’Prey J et al (2006) DRAM, a p53- induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134

    Article  CAS  PubMed  Google Scholar 

  • Devesa V, Del Razo LM, Adair B et al (2004) Comprehensive analysis of arsenic metabolites by pH-specific hydride generation atomic absorption spectrometry. J Anal At Spectrom 19(11):1460–1467

    Article  CAS  Google Scholar 

  • Dodd MC, Vu ND, Ammann A et al (2006) Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment. Environ Sci Technol 40(10):3285–3292

    Article  CAS  PubMed  Google Scholar 

  • Douillet C, Currier J, Saunders J, Bodnar WM, Matouˇsek T, Styblo M (2013) Methylated trivalent arsenicals are potent’ inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicol Appl Pharmacol 267(1):11–15

    Article  CAS  PubMed  Google Scholar 

  • DPHE, National Policy for Arsenic Mitigation (2004) http://www.dphe.gov.bd/index.php?option=com_content&view=article&id=80&Itemid=85

  • DPHE (2008) Union wise water technology mapping [Dhaka circle], vol 1. DPHE Publication, Dhaka

    Google Scholar 

  • Eblin KE, Bowen ME, Cromey DW et al (2006) Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217(1):7–14

    Article  CAS  PubMed  Google Scholar 

  • Eun HK, Sohn S, Hyuk JK et al (2007) Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 67(13):6314–6324

    Article  Google Scholar 

  • Gailer J (2007) Arsenic-selenium and mercury-selenium bonds in biology. Coord Chem Rev 251(1–2):234–254

    Article  CAS  Google Scholar 

  • Garai R, Chakraborti AK, Dey SB, Saha KC (1984) Chronic arsenic poisoning from tubewell water. J Indian Med Assoc 82:34–35

    CAS  PubMed  Google Scholar 

  • Gentry PR, McDonald TB, Sullivan DE, Shipp AM, Yager JW, Clewell HJ (2010) Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity. Environ Mol Mutagen 51(1):1–14

    CAS  PubMed  Google Scholar 

  • George CM, Inauen J, Rahman SM, Zheng Y (2013) The effectiveness of educational interventions to enhance the adoption of fee-based arsenic testing in Bangladesh: a cluster randomized controlled trial. Am J Trop Med Hyg 89:138–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh NC, Singh RD (2015) Groundwater arsenic contamination in India: vulnerability and scope for remedy. http://www.cgwb.gov.in/documents/papers/incidpapers/Paper%208%20-%20Ghosh.pdf. Accessed 18 Apr 2015

  • Government of West Bengal (2014) Public Health Engineering Department (GWB PHED) Kolkata. http://www.wbphed.gov.in/main/index.php/water-quality/arsenic-mitigation/background#. Accessed 30 Sept 2014

  • Guan X-H, Wang J, Chusuei CC (2008) Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies. J Hazard Mater 156(1–3):178–185

    Article  CAS  PubMed  Google Scholar 

  • Halder D, Biswas A, Šlejkovec Z, Chatterjee D, Nriagu J, Jacks G et al (2014) Arsenic species in raw and cooked rice: Implications for human health in rural Bengal. Sci Total Environ 497/498:200–208

    Article  CAS  Google Scholar 

  • Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hartwig A (2001) Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 3(4):625–634

    Article  CAS  PubMed  Google Scholar 

  • Hei TK, Filipic M (2004) Role of oxidative damage in the genotoxicity of arsenic. Free Radic Biol Med 37(5):574–581

    Article  CAS  PubMed  Google Scholar 

  • Hira-Smith MM, Yuan Y, Savarimuthu X, Liaw J, Hira A, Green C, Hore T, Chakraborty P, von Ehrenstein OS, Smith AH (2007) Arsenic concentrations and bacterial contamination in a pilot shallow dugwell program in West Bengal, India. J Environ Sci Health A 42(1):89–95

    Article  CAS  Google Scholar 

  • Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15(10):572–578

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, McArthur JM, Sikdar PK (2012) The palaeosol model of arsenic pollution of groundwater tested along a 32 km traverse across West Bengal, India. Sci Total Environ 431:157–165

    Article  CAS  PubMed  Google Scholar 

  • Hoque BA, Hoque MM, Ahmed T, Islam S, Azad AK, Ali N, Hossain M, Hossain MS (2004) Demand-based water options for arsenic mitigation: an experience from rural Bangladesh. Public Health 118(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Huang R-N, Lee T-C (1996) Cellular uptake of trivalent arsenite and pentavalent arsenate in KB cells cultured in phosphate-free medium. Toxicol Appl Pharmacol 136(2):243–249

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Ma W-Y, Li J, Dong Z (1999) Arsenic induces apoptosis through a c-Jun NH2-terminal kinase- dependent, p53-independent pathway. Cancer Res 59(13):3053–3058

    CAS  PubMed  Google Scholar 

  • Hussam A, Munir AKM (2007) A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. J Environ Sci Health A Tox Hazard Subst Environ Eng 42(12):1869–1878

    Article  CAS  PubMed  Google Scholar 

  • Inauen J, Tobias R, Mosler HJ (2013) Predicting water consumption habits for seven arsenic-safe water options in Bangladesh. BMC Public Health 13:417

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MA, Sakakibara H, Karim MR, Sekine M, Mahmud ZH (2011) Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh. J Water Health 9(2):415–428

    Article  CAS  PubMed  Google Scholar 

  • Jekel MR (1994) Removal of arsenic in drinking water treatment. In: Nriagu JO (ed) Arsenic in the environment, part 1: cycling and characterization. Wiley, New York

    Google Scholar 

  • Joya SA, Mostofa G, Yousuf J et al (2006) One solution to the arsenic problem: a return to surface (improved dug) wells. J Health Popul Nutr 24(3):363–375

    PubMed  PubMed Central  Google Scholar 

  • Kanematsu M, Young TM, Fukushi K, Green PG, Darby JL (2013) Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major coexisting ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochim Cosmochim Acta 106:404–428

    Article  CAS  Google Scholar 

  • Karim MR (2010) Microbial contamination and associated health burden of rainwater harvesting in Bangladesh. Water Sci Technol 61(8):2129–2135

    Article  CAS  PubMed  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI, Jekel M (2004) Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxides during groundwater treatment. Ind Eng Chem Res 43:486–493

    Article  CAS  Google Scholar 

  • Khan AH, Rasul SB, Munir AKM, Habibuddowla M, Alauddin M, Newaz SS, Hussam A (2000) Appraisal of a simple arsenic removal method for ground water of Bangladesh. J Environ Sci Health A 35(7):1021–1041

    Article  Google Scholar 

  • Kim T-S, Jeong D-W, Byung YY, Ick YK (2002) Dysfunction of rat liver mitochondria by selenite: induction of mitochondrial permeability transition through thiol-oxidation. Biochem Biophys Res Commun 294(5):1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Kircelli F, Akay C, Gazitt Y (2007) Arsenic trioxide induces p53-dependent apoptotic signals in myeloma cells with SiRNAsilenced p53: MAP kinase pathway is preferentially activated in cells expressing inactivated p53. Int J Oncol 30(4):993–1001

    CAS  PubMed  Google Scholar 

  • Klas S, Kirk DW (2013) Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron. J Hazard Mater 252-253:77–82

    Article  CAS  PubMed  Google Scholar 

  • Kojima C, Ramirez DC, Tokar EJ et al (2009) Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 101(24):1670–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leupin OX, Hug SJ (2005) Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39(9):1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shen J, Carbrey J, Mukhopadhyay MR, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99(9):6053–6058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Jiang C, Kaeck M et al (1995) Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochem Pharmacol 50(2):213–219

    Article  CAS  PubMed  Google Scholar 

  • Majumdar K, Sanyal SK (2003) pH-dependent arsenic sorption in an Alfisol and an Entisols of West Bengal. Agropedol 13:25–29

    Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25(8):1414–1419

    Article  CAS  Google Scholar 

  • McKenzie RC, Arthur JR, Beckett GJ (2002) Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxid Redox Signal 4(2):339–351

    Article  CAS  PubMed  Google Scholar 

  • McNeill LS, Edwards M (1995) Soluble arsenic removal at water treatment plants. J Am Water Works Assoc 87(4):105–113

    Article  CAS  Google Scholar 

  • Milton AH, Smith W, Dear K et al (2007) A randomised intervention trial to assess two arsenic mitigation options in Bangladesh. J Environ Sci Health A Tox Hazard Subst Environ Eng 42(12):1897–1908

    Article  CAS  PubMed  Google Scholar 

  • Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee SC, Rahman MM, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR et al (2003) Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal, India. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:165–183

    Article  PubMed  CAS  Google Scholar 

  • Murcott S (2012) Arsenic contamination in the world: an international sourcebook. IWA Publishing, London

    Google Scholar 

  • Naranmandura H, Suzuki N, Suzuki KT (2006) Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol 19(8):1010–1018

    Article  CAS  PubMed  Google Scholar 

  • Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E (2006) Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence. Environ Health Perspect 114(5):641–648. https://doi.org/10.1289/ehp.8551. PMID: 16675414; PMCID: PMC1459913

    Article  CAS  PubMed  Google Scholar 

  • Nesnow S, Roop BC, Lambert G et al (2002) DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chem Res Toxicol 15(12):1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Neumann A, Kaegi R, Voegelin A, Hussam A, Munir AKM, Hug SJ (2013) Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environ Sci Technol 47(9):4544–4554

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13(2):45–49

    Article  CAS  PubMed  Google Scholar 

  • Paul DS, Harmon AW, Devesa V, Thomas DJ, Styblo M (2007) Molecular mechanisms of the diabetogenic effects’ of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect 115(5):734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Das N, Bhattacharjee P, Banerjee M, Das JK, Sarma N et al (2013) Arsenic-induced toxicity and carcinogenicity: a two-wave cross-sectional study in arsenicosis individuals in West Bengal, India. J Expo Sci Environ Epidemiol 23:156–162

    Article  CAS  PubMed  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken AH (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in chang human hepatocytes. Toxicol Appl Pharmacol 163(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Planning Commission GoI (PC GOI) (2007) Report of the task force on formulating action plan for removal of arsenic contamination in West Bengal. Government of India. http://planningcommission.nic.in/aboutus/committee/wrkgrp11/tf11_arsenics.pdf. Accessed 25 Nov 2014

  • Rahman MH, Ishiga H (2003) Arsenic pollution in soil and groundwater of Bangladesh. In: Proceedings of the international conference on energy and environment, vol 2, pp 1626–1632

    Google Scholar 

  • Rahman M, Akter MN, Howlider MAR (2003) Replacement of fish meal by hatchery wastes in broilers diets. Bangladesh Vet 20(1):29–35

    Google Scholar 

  • Rahman M, Vahter M, Wahed MA, Sohel N, Yunus M, Streatfield PK, El Arifeen S, Bhuiya A, Zaman K, Chowdhury AM, Ekstrom EC, Persson LA (2006) Prevalence of arsenic exposure and skin lesions. A population based survey in Matlab, Bangladesh. J Epidemiol Community Health 60:242–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramana CV, Boldogh I, Izumi T, Mitra S (1998) Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci U S A 95(9):5061–5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley, West Sussex

    Book  Google Scholar 

  • Rehman K, Naranmandura H (2012) Arsenic metabolism and thioarsenicals. Metallomics 4(9):881–892

    Article  CAS  PubMed  Google Scholar 

  • Ryan KM, Phillips AC, Vousden KH (2001) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13(3):332–337

    Article  CAS  PubMed  Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93(1–4):117–136

    Article  CAS  Google Scholar 

  • Sanyal SK, Gupta SK, Kukal SS, Jeevan Rao K (2015) Soil degradation, pollution and amelioration. In: Pathak H, Sanyal SK, Takkar PN (eds) State of Indian agriculture-soil. National Academy of Agricultural Sciences, New Delhi

    Google Scholar 

  • Saxena VK, Rajput S, Singh VS (2004) Occurrence, behavior and speciation of arsenic in groundwater. Curr Sci 86(2):281

    CAS  Google Scholar 

  • Selvaraj V, Tomblin J, Armistead MY, Murray E (2013) Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage. Ecotoxicol Environ Saf 87:80–88

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Tjell JC, Mosbæk H (2006) Health effects from arsenic in groundwater of the Bengal delta: effects of iron and water storage practices. Environ Geosci 13(1):17–29

    Article  Google Scholar 

  • Sharma AK, Tjell JC, Sloth JJ, Holm PE (2014) Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Appl Geochem 41:1–33

    Article  CAS  Google Scholar 

  • Shen H-M, Liu Z-G (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40(6):928–939

    Article  CAS  PubMed  Google Scholar 

  • Shen H-M, Yang C-F, Ding W-X, Liu J, Ong C-N (2001) Superoxide radical-initiated apoptotic signalling pathway in selenite-treated HepG2 cells: mitochondria serve as the main target. Free Radic Biol Med 30(1):9–21

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004a) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255(1–2):67–78. https://doi.org/10.1023/b:mcbi.0000007262.26044.e8. PMID: 14971647

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Hudson LG, Ding W et al (2004b) Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chem Res Toxicol 17(7):871–878

    Article  CAS  PubMed  Google Scholar 

  • Sies H, de Groot H (1992) Role of reactive oxygen species in cell toxicity. Toxicol Lett 64-65:547–551

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71(2):599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha D, Biswas J, Bishayee A (2013) Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. Arch Toxicol 87(2):383–396

    Article  CAS  PubMed  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568. https://doi.org/10.1016/s0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Sun L, Zheng M, Liu H, Peng S, Huang J, Cui K et al (2014) Water management practices affect arsenic and cadmium accumulation in rice grains. Sci World J 2014:596438

    Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22(1–2):269–285

    Article  CAS  PubMed  Google Scholar 

  • Suzuki KT, Kurasaki K, Suzuki N (2007) Selenocysteine 𝛽-lyase and methylselenol demethylase in the metabolism of se-methylated selenocompounds into selenide. BBA-Gen Subjects 1770(7):1053–1061

    Article  CAS  Google Scholar 

  • Tapio S, Grosche B (2006) Arsenic in the aetiology of cancer. Mutation Res-Genetic Toxicol Environl Mutagen 612:215–246

    CAS  Google Scholar 

  • Tresintsi S, Simeonidis K, Vourlias G, Stavropoulos G, Mitrakas M (2012) Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation-precipitation parameters. Water Res 46(16):5255–5267

    Article  CAS  PubMed  Google Scholar 

  • Valdiglesias V, Pasaro E, Endez J, M ´, and Laffon B. (2010) In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol 84(5):337–351

    Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310

    Article  CAS  PubMed  Google Scholar 

  • Wang T-S, Hsu T-Y, Chung C-H, Wang ASS, Bau D-T, Jan K-Y (2001) Arsenite induces oxidative DNA adducts and DNA-protein cross-links in mammalian cells. Free Radic Biol Med 31(3):321–330

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Kou M-C, Weng C-Y, Hu L-W, Wang Y-J, Wu M-J (2012) Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF -B, and MAPK pathways. Arch Toxicol 86(6):879–896

    Article  CAS  PubMed  Google Scholar 

  • Warner NR, Levy J, Harpp K, Farruggia F (2008) Drinking water quality in Nepal’s Kathmandu Valley: a survey and assessment of selected controlling site characteristics. Hydrogeol J 16(2):321–334

    Article  CAS  Google Scholar 

  • Wei M, Wanibuchi H, Morimura K et al (2002) Carcinogenicity of dimethylarsinic acid in male F344 rats and genetic alterations in induced urinary bladder tumors. Carcinogenesis 23(8):1387–1397

    Article  CAS  PubMed  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, vol 4. World Health Organization

    Google Scholar 

  • Yih L-H, Lee T-C (2000) Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Res 60(22):6346–6352

    CAS  PubMed  Google Scholar 

  • Yokota H, Tanabe K, Sezaki M, Akiyoshi Y, Miyata T, Kawahara K, Tsushima S, Hironaka H, Takafuji H, Rahman M, Ahmad SA, Sayed MHSU, Faruquee MH (2001) Arsenic contamination of ground and pond water and water purification system using pond water in Bangladesh. Eng Geol 60(1–4):323–331

    Article  Google Scholar 

  • Yoshida T, Yamauchi H, Fan SG (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol 198(3):243–252

    Article  CAS  PubMed  Google Scholar 

  • Zakharyan RA, Aposhian HV (1999) Arsenite methylation by methylvitamin B12 and glutathione does not require an enzyme. Toxicol Appl Pharmacol 154(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Zhang T-C, Schmitt MT, Mumford JL (2003) Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro. Carcinogenesis 24(11):1811–1817

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Sun X, Cooper KL, Wang F, Liu KJ, Hudson LG (2011) Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J Biol Chem 286(26):22855–22863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Kumar, S., Ghosh, A. (2021). Current Scenario of Groundwater Arsenic Contamination in West Bengal and Its Mitigation Approach. In: Kumar, N. (eds) Arsenic Toxicity: Challenges and Solutions. Springer, Singapore. https://doi.org/10.1007/978-981-33-6068-6_8

Download citation

Publish with us

Policies and ethics