Skip to main content

Developments in Nanoadsorbents for the Treatment of Arsenic-Contaminated Water

  • Chapter
  • First Online:
Arsenic Toxicity: Challenges and Solutions

Abstract

Arsenic is an extremely hazardous metalloid affecting the health of millions of people worldwide. Numerous technologies have been developed to remove As from drinking water/wastewater, of which adsorption is considered as the most effective technique. Nanoadsorbents such as nano-scale zero valent metals, carbon nanotubes (CNTs), and biochar/biomaterial-based nanocomposites are being widely used by the researchers for water treatment. In this chapter, recent developments in the nanoadsorbents to eliminate As from water/wastewater are discussed. Application of raw and engineered nanoparticles (NPs) such as iron oxide/hydroxide, alumina, copper oxide, titanium oxide, bi-metal oxides and carbonaceous NPs are primarily focused. Different techniques for the physico-chemical characterization of nanoadsorbents, including Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) have been discussed briefly. The influence of numerous factors (e.g., pH, synthesis method, initial concentration, particle size, competing ions, and contact medium) on As adsorption capacity by nanoadsorbents are deliberated. Furthermore, the chapter also discusses As adsorption mechanisms and regeneration and separation of nanoadsorbents from water/wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul KSM, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PMC (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40:828–846

    Article  PubMed  CAS  Google Scholar 

  • Al Omar MK, Alsaadi MA, Aljumaily MM, Akib S, Jassam TM, Hashim MA (2017) N, n-diethylethanolammonium chloride-based des-functionalized carbon nanotubes for arsenic removal from aqueous solution. Desalin Water Treat 74:163–173

    Article  CAS  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  PubMed  Google Scholar 

  • Alijani H, Shariatinia Z (2017) Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe2O3 as a precursor. Chemosphere 171:502–511

    Article  CAS  PubMed  Google Scholar 

  • Amen R, Bashir H, Bibi I, Hussain MM, Shaheen SM, Shahid M, Shakoor MB, Hina K, Wang H, Bundschuh J (2020a) Arsenic removal from water using biochar-based sorbents: production, characterization, and sequestration mechanisms. In: Soil and groundwater remediation technologies. CRC Press, Boca Raton, pp 63–80

    Chapter  Google Scholar 

  • Amen R, Bashir H, Bibi I, Shaheen SM, Niazi NK, Shahid M, Hussain MM, Antoniadis V, Shakoor MB, Al-Solaimani SG (2020b) A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chem Eng J 396:125195

    Article  CAS  Google Scholar 

  • An B, Liang Q, Zhao D (2011) Removal of arsenic (V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Res 45:1961–1972

    Article  CAS  PubMed  Google Scholar 

  • Ananta S, Saumen B, Vijay V (2015) Adsorption isotherm, thermodynamic and kinetic study of arsenic (III) on iron oxide coated granular activated charcoal. Int. Res J Environ Sci 4:64–77

    Google Scholar 

  • Aranda PR, Llorens I, Perino E, De Vito I, Raba J (2016) Removal of arsenic (V) ions from aqueous media by adsorption on multiwall carbon nanotubes thin film using XRF technique. Environ Nanotechnol Monitor Manage 5:21–26

    Article  Google Scholar 

  • Attia TMS, Hu XL (2013) Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere 93:2076–2085

    Article  CAS  Google Scholar 

  • Bai L, Ma X, Liu J, Sun X, Zhao D, Evans DG (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132:2333–2337

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan GS, Rajendran K, Kalirajan J (2020) Microbial synthesis of magnetite nanoparticles for arsenic removal. J Appl Biol Biotechnol 8:70–75

    Article  CAS  Google Scholar 

  • Bassyouni M, Mansi A, Elgabry A, Ibrahim BA, Kassem OA, Alhebeshy R (2020) Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNTs’ potential and current challenges. Appl Phys A 126:38

    Article  CAS  Google Scholar 

  • Budimirović D, Veličković ZS, Bajić Z, Milošević DL, Nikolić JB, Drmanić SŽ, Marinković AD (2017) Removal of heavy metals from water using multistage functionalized multiwall carbon nanotubes. J Serb Chem Soc 82:1175–1191

    Article  Google Scholar 

  • Chai F, Wang R, Yan L, Li G, Cai Y, Xi C (2020) Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient as (v) removal. Carbohydr Polym 245:116511

    Article  CAS  PubMed  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Lin W, Ying W-c (2010) Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. J Hazard Mater 184:515–522

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Parette R, Zou J, Cannon FS, Dempsey BA (2007) Arsenic removal by iron-modified activated carbon. Water Res 41:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wu H-X, Wang T-J, Jin Y, Zhang Y, Dou X-M (2009) Granulation of Fe–Al–Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed. Powder Technol 193:59–64

    Article  CAS  Google Scholar 

  • Chen G, Wang Y, Yang M, Xu J, Goh SJ, Pan M, Chen H (2010) Measuring ensemble-averaged surface-enhanced Raman Scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132:3644–3645

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang T-J, Wu H-X, Jin Y, Zhang Y, Dou X-M (2011) Optimization of a fe–al–ce nano-adsorbent granulation process that used spray coating in a fluidized bed for fluoride removal from drinking water. Powder Technol 206:291–296

    Article  CAS  Google Scholar 

  • Chen B, Zhu Z, Ma J, Yang M, Hong J, Hu X, Qiu Y, Chen J (2014a) One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. J Colloid Interface Sci 434:9–17

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Liu Y, Liu F, Zhang X (2014b) Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability. Appl Surf Sci 311:808–815

    Article  CAS  Google Scholar 

  • Chen L, Xin H, Fang Y, Zhang C, Zhang F, Cao X, Zhang C, Li X (2014c) Application of metal oxide heterostructures in arsenic removal from contaminated water. J Nanomater 2014:793610

    Google Scholar 

  • Cui H, Li Q, Gao S, Shang JK (2012) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J Ind Eng Chem 18:1418–1427

    Article  CAS  Google Scholar 

  • Danish MI, Qazi IA, Zeb A, Habib A, Awan MA, Khan Z (2013) Arsenic removal from aqueous solution using pure and metal-doped titania nanoparticles coated on glass beads: adsorption and column studies. J Nanomater 2013:873694

    Article  CAS  Google Scholar 

  • Darban AK, Kianinia Y, Taheri-Nassaj E (2013) Synthesis of nano-alumina powder from impure kaolin and its application for arsenite removal from aqueous solutions. J Environ Health Sci Eng 11:19

    Article  CAS  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 2014:398569

    CAS  Google Scholar 

  • Deedar N, Aslam I (2009) Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J Environ Sci 21:402–408

    Article  CAS  Google Scholar 

  • Deliyanni E, Matis K (2005) Sorption of cd ions onto akaganeite-type nanocrystals. Sep Purif Technol 45:96–102

    Article  CAS  Google Scholar 

  • Deliyanni E, Bakoyannakis D, Zouboulis A, Matis K (2003) Sorption of as (v) ions by akaganeite-type nanocrystals. Chemosphere 50:155–163

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Yang B, Jin J, Li J, Kang H, Zhong X, Li R, Ma J (2009) Quinoline group modified carbon nanotubes for the detection of zinc ions. Nanoscale Res Lett 4:335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egbosiuba T, Abdulkareem A, Kovo A, Afolabi E, Tijani J, Roos W (2020) Enhanced adsorption of As (V) and Mn (VII) from industrial wastewater using multi-walled carbon nanotubes and carboxylated multi-walled carbon nanotubes. Chemosphere 254:126780

    Article  CAS  PubMed  Google Scholar 

  • Fazeli M, Kazemibalgehshiri M, Alighardashi A (2016) Water pollutants adsorption through an enhanced activated carbon derived from agriculture waste. Arch Hyg Sci 5:286–294

    CAS  Google Scholar 

  • Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo JL (2013) Functionalization of porous carbons for catalytic applications. J Mater Chem A 1:9351–9364

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gallios GP, Tolkou AK, Katsoyiannis IA, Stefusova K, Vaclavikova M, Deliyanni EA (2017) Adsorption of arsenate by nano scaled activated carbon modified by iron and manganese oxides. Sustainability 9:1684

    Article  CAS  Google Scholar 

  • Gangupomu RH, Sattler ML, Ramirez D (2014) Carbon nanotubes for air pollutant control via adsorption: a review. Rev Nanosci Nanotechnol 3:149–160

    Article  CAS  Google Scholar 

  • Gao W (2015) The chemistry of graphene oxide. In: Graphene oxide. Springer, New York, pp 61–95

    Chapter  Google Scholar 

  • Ghosh MK, Poinern GEJ, Issa TB, Singh P (2012) Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J Chem Eng 29:95–102

    Article  CAS  Google Scholar 

  • Goswami A, Raul P, Purkait M (2012) Arsenic adsorption using copper (ii) oxide nanoparticles. Chem Eng Res Des 90:1387–1396

    Article  CAS  Google Scholar 

  • Gulipalli CS, Prasad B, Wasewar KL (2011) Batch study, equilibrium and kinetics of adsorption of selenium using rice husk ash (RHA). J Eng Sci Technol 6:586–605

    Google Scholar 

  • Gupta K, Ghosh UC (2009) Arsenic removal using hydrous nanostructure iron (iii)–titanium (iv) binary mixed oxide from aqueous solution. J Hazard Mater 161:884–892

    Article  CAS  PubMed  Google Scholar 

  • Han DS, Abdel-Wahab A, Batchelor B (2010) Surface complexation modeling of arsenic (III) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs). J Colloid Interface Sci 348:591–599

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 23:3693–3700

    Article  CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92:2355–2388

    Article  CAS  Google Scholar 

  • Hoskins JS, Karanfil T, Serkiz SM (2002) Removal and sequestration of iodide using silver-impregnated activated carbon. Environ Sci Technol 36:784–789

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723

    Article  CAS  PubMed  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  PubMed  CAS  Google Scholar 

  • Hung W-C, Fu S-H, Tseng J-J, Chu H, Ko T-H (2007) Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped tio2 prepared by the sol–gel method. Chemosphere 66:2142–2151

    Article  CAS  PubMed  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13:59–81

    Article  CAS  Google Scholar 

  • Issa NB, Rajaković-Ognjanović VN, Jovanović BM, Rajaković LV (2010) Determination of inorganic arsenic species in natural waters—benefits of separation and preconcentration on ion exchange and hybrid resins. Anal Chim Acta 673:185–193

    Article  PubMed  CAS  Google Scholar 

  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philosophical Trans R Soc B Biol Sci 365:2835–2851

    Article  Google Scholar 

  • Jang M, Shin EW, Park JK, Choi SI (2003) Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides. Environ Sci Technol 37:5062–5070

    Article  CAS  PubMed  Google Scholar 

  • Jegadeesan G, Al-Abed SR, Sundaram V, Choi H, Scheckel KG, Dionysiou DDJWR (2010) Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. Water Res 44:965–973

    Article  CAS  PubMed  Google Scholar 

  • Kamath V, Chandra P, Jeppu GP (2020) Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. Int J Phytoremediation 22(12):1278–1294

    Article  CAS  PubMed  Google Scholar 

  • Kanel SR, Greneche J-M, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Kausar A (2017) Environmental remediation using polystyrene/4-aminophenyl methyl sulfone and carbon nanotube nanocomposite. Phys Chem 7:27–30

    CAS  Google Scholar 

  • Khodabakhshi A, Amin MM, Mozaffari M (2011) Synthesis of magnetite nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Iran J Environ Health Sci Eng 8:189–200

    CAS  Google Scholar 

  • Kong S, Wang Y, Zhan H, Yuan S, Yu M, Liu M (2014) Adsorption/oxidation of arsenic in groundwater by nanoscale fe-mn binary oxides loaded on zeolite. Water Environ Res 86:147–155

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar M, Sood A (2014) Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Patel M, Singh P, Bundschuh J, Pittman CU Jr, Trakal L, Mohan D (2019) Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: methods, experience from, and options for Latin America. Sci Total Environ 694:133427

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Singhal A, Kumari PJJoWPE (2020) Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. Chem Eng J 36:101276

    Google Scholar 

  • Lata S, Samadder S (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manag 166:387–406

    Article  CAS  Google Scholar 

  • Lata S, Singh P, Samadder S (2015) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 12:1461–1478

    Article  CAS  Google Scholar 

  • LeMonte JJ, Stuckey JW, Sanchez JZ, Tappero R, Rinklebe Jr, Sparks DL (2017) Sea level rise induced arsenic release from historically contaminated coastal soils. Environ Sci Technol 51:5913–5922

    Article  CAS  PubMed  Google Scholar 

  • Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of pb2+, cu2+ and cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Li Z, Deng S, Yu G, Huang J, Lim VC (2010) As (V) and As (III) removal from water by a Ce–Ti oxide adsorbent: Behavior and mechanism. Chem Eng J 161:106–113

    Article  CAS  Google Scholar 

  • Li R, Li Q, Gao S, Shang JK (2012) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. Adsorption capacity and mechanism. Chem Eng J 185:127–135

    Article  CAS  Google Scholar 

  • Liu Y, Li Q, Gao S, Shang JK (2011) Exceptional as (iii) sorption capacity by highly porous magnesium oxide nanoflakes made from hydrothermal synthesis. J Am Ceram Soc 94:217–223

    Article  CAS  Google Scholar 

  • Liu H, Zuo K, Vecitis CD (2014) Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ Sci Technol 48:13871–13879

    Article  CAS  PubMed  Google Scholar 

  • Luan H, Zhang Q, Cheng G-a, Huang H (2018) As (iii) removal from drinking water by carbon nanotube membranes with magnetron-sputtered copper: Performance and mechanisms. ACS Appl Mater Interfaces 10:20467–20477

    Article  CAS  PubMed  Google Scholar 

  • Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    Article  CAS  PubMed  Google Scholar 

  • Maiti A, Basu JK, De S (2012) Experimental and kinetic modeling of as (v) and as (iii) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chem Eng J 191:1–12

    Article  CAS  Google Scholar 

  • Maity D, Agrawal D (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308:46–55

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination 281:93–99

    Article  CAS  Google Scholar 

  • Martinson CA, Reddy K (2009) Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interface Sci 336:406–411

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Barrón J, Jacobo-Azuara A, Leyva-Ramos R, Berber-Mendoza MS, Guerrero-Coronado RM, Fuentes-Rubio L, Martínez-Rosales JM (2011) Adsorption of arsenic (V) from a water solution onto a surfactant-modified zeolite. Adsorption 17:489–496

    Article  CAS  Google Scholar 

  • Mishra AK, Ramaprabhu S (2010) Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J Phys Chem C 114:2583–2590

    Article  CAS  Google Scholar 

  • Moeser GD, Roach KA, Green WH, Alan Hatton T, Laibinis PE (2004) High-gradient magnetic separation of coated magnetic nanoparticles. AIChE J 50:2835–2848

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  PubMed  Google Scholar 

  • Mubarak N, Sahu J, Abdullah E, Jayakumar N (2014) Removal of heavy metals from wastewater using carbon nanotubes. Sep Purif Rev 43:311–338

    Article  CAS  Google Scholar 

  • Murugan M, Jansirani M, Subramaniam P, Subramanian E (2017) Arsenic removal using silver-impregnated Prosopis spicigera L. wood (PSLW) activated carbon: batch and column studies. J Appl Sci Environ Manag 21:1307–1312

    CAS  Google Scholar 

  • Nassar NN (2012) Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview. Appl Adsorbents Water Pollut Control 135:81–118

    Article  Google Scholar 

  • Niazi NK, Burton ED (2016) Arsenic sorption to nanoparticulate mackinawite (FeS): an examination of phosphate competition. Environ Pollut 218:111–117

    Article  CAS  PubMed  Google Scholar 

  • Niu S-f, Liu Y, Xu X-h, Lou Z-h (2005) Removal of hexavalent chromium from aqueous solution by iron nanoparticles. J Zhejiang Univ Sci 6:1022

    Article  CAS  Google Scholar 

  • Nodeh MKM, Gabris MA, Nodeh HR, Bidhendi ME (2018) Efficient removal of arsenic (iii) from aqueous media using magnetic polyaniline-doped strontium–titanium nanocomposite. Environ Sci Pollut Res 25:16864–16874

    Article  CAS  Google Scholar 

  • Ntim SA, Mitra S (2012) Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J Colloid Interface Sci 375:154–159

    Article  PubMed  CAS  Google Scholar 

  • Parsons J, Lopez M, Peralta-Videa J, Gardea-Torresdey J (2009) Determination of arsenic (III) and arsenic (V) binding to microwave assisted hydrothermal synthetically prepared fe3o4, mn3o4, and mnfe2o4 nanoadsorbents. Microchem J 91:100–106

    Article  CAS  Google Scholar 

  • Payne KB, Abdel-Fattah TM (2005) Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of ph, temperature, and ionic strength. J Environ Sci Health 40:723–749

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Asaduzzaman M, Naidu R (2011) Arsenic exposure from rice and water sources in the Noakhali district of Bangladesh. Water Qual Expo Health 3:1–10

    Article  CAS  Google Scholar 

  • Rakibuddin M, Kim H (2020) Sol-gel derived Fe3O4 quantum dot decorated silica composites for effective removal of arsenic (iii) from water. Mater Chem Phys 240:122245

    Article  CAS  Google Scholar 

  • Raval NP, Kumar M (2020) Geogenic arsenic removal through core–shell based functionalized nanoparticles: groundwater in-situ treatment perspective in the post–covid anthropocene. J Hazard Mater 402:123466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5:29885–29907

    Article  CAS  Google Scholar 

  • Raychoudhury T, Schiperski F, Scheytt T (2015) Distribution of iron in activated carbon composites: assessment of arsenic removal behavior. Water Sci Technol 15:990–998

    CAS  Google Scholar 

  • Raza M, Hussain F, Lee J-Y, Shakoor MB, Kwon KD (2017) Groundwater status in pakistan: a review of contamination, health risks, and potential needs. Crit Rev Environ Sci Technol 47:1713–1762

    Article  Google Scholar 

  • Raza ZA, Khalil S, Ayub A, Banat IM (2020) Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydr Res 492:108004

    Article  CAS  PubMed  Google Scholar 

  • Reddy K, McDonald KJ, King H (2013) A novel arsenic removal process for water using cupric oxide nanoparticles. J Colloid Interface Sci 397:96–102

    Article  CAS  PubMed  Google Scholar 

  • Reed BE, Vaughan R, Jiang L (2000) As (III), As (V), Hg, and Pb removal by Fe-oxide impregnated activated carbon. J Environ Eng 126:869–873

    Article  CAS  Google Scholar 

  • Rezaee R, Nasseri S, Mahvi AH, Jafari A, Safari M, Shahmoradi B, Alimohammadi M, Khazaei M, Maroosi M (2016) Fabrication of ultrathin graphene oxide-coated membrane with hydrophilic properties for arsenate removal from water. J Adv Environ Health Res 4:169–175

    CAS  Google Scholar 

  • Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic, New York

    Google Scholar 

  • Saha S, Sarkar P (2012) Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J Hazard Mater 227:68–78

    Article  PubMed  CAS  Google Scholar 

  • Saleh TA, Agarwal S, Gupta VK (2011) Synthesis of mwcnt/mno2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B Environ 106:46–53

    CAS  Google Scholar 

  • Salem Attia TM, Hu XL, Yin DQ (2014) Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution. J Exp Nanosci 9:551–560

    Article  CAS  Google Scholar 

  • Sanaei L, Tahmasebpour M, Khatamian M Divband B (2020) Arsenic removal from aqueous solutions using fe3o4-naa zeolite: Experimental and modeling investigations. AUT J Mech Eng. https://doi.org/10.22060/AJME.2020.17214.5849

  • Sanjrani M, Zhou B, Zhao H, Bhutto S, Muneer A, Xia S (2019) Arsenic contaminated groundwater in China and its treatment options, a review. Appl Ecol Environ Res 17:1655–1683

    Article  Google Scholar 

  • Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation-a critical review. Chemosphere 158:37–49

    Article  CAS  PubMed  Google Scholar 

  • Savina IN, English CJ, Whitby RL, Zheng Y, Leistner A, Mikhalovsky SV, Cundy AB (2011) High efficiency removal of dissolved as (iii) using iron nanoparticle-embedded macroporous polymer composites. J Hazard Mater 192:1002–1008

    Article  CAS  PubMed  Google Scholar 

  • Sawana R, Somasundar Y, Iyer VS, Baruwati B (2017) Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification. Appl Water Sci 7:1223–1230

    Article  CAS  Google Scholar 

  • Shah AH, Shahid M, Khalid S, Shabbir Z, Bakhat HF, Murtaza B, Farooq A, Akram M, Shah GM, Nasim W (2020) Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environ Geochem Health 42(1):121–133

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Khalid M, Dumat C, Khalid S, Niazi NK, Imran M, Bibi I, Ahmad I, Hammad HM, Tabassum RA (2018a) Arsenic level and risk assessment of groundwater in Vehari, Punjab province, Pakistan. Exposure Health 10:229–239

    Article  CAS  Google Scholar 

  • Shahid M, Niazi NK, Dumat C, Naidu R, Khalid S, Rahman MM, Bibi I (2018b) A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ Pollut 242:307–319

    Article  CAS  PubMed  Google Scholar 

  • Shahrin S, Lau W-J, Goh P-S, Jaafar J, Ismail AF (2018) Adsorptive removal of as (v) ions from water using graphene oxide-manganese ferrite and titania nanotube-manganese ferrite hybrid nanomaterials. Chem Eng Technol 41:2250–2258

    Article  CAS  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Murtaza G, Kunhikrishnan A, Seshadri B, Shahid M, Ali S, Bolan NS, Ok YS (2016) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol 46:467–499

    Article  CAS  Google Scholar 

  • Sharma A, Verma N, Sharma A, Deva D, Sankararamakrishnan N (2010) Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: synthesis, characterization and application in arsenic removal. Chem Eng Sci 65:3591–3601

    Article  CAS  Google Scholar 

  • Shen Y, Tang J, Nie Z, Wang Y, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319

    Article  CAS  Google Scholar 

  • Siddiqui SI, Singh PN, Tara N, Pal S, Chaudhry SA, Sinha I (2020) Arsenic removal from water by starch functionalized maghemite nano-adsorbents: thermodynamics and kinetics investigations. Colloid Interf Sci Commun 36:100263

    Article  CAS  Google Scholar 

  • Sridhar V, Jung KH, Park H (2020) Vitamin derived nitrogen doped carbon nanotubes for efficient oxygen reduction reaction and arsenic removal from contaminated water. Materials 13:1686

    Article  CAS  PubMed Central  Google Scholar 

  • Sverjensky DA, Fukushi K (2006) A predictive model (ETLM) for As (III) adsorption and surface speciation on oxides consistent with spectroscopic data. Geochim Cosmochim Acta 70:3778–3802

    Article  CAS  Google Scholar 

  • Sweetman MJ, May S, Mebberson N, Pendleton P, Vasilev K, Plush SE, Hayball JD (2017) Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification. J Carbon Res 3:18

    Article  CAS  Google Scholar 

  • Tabassum RA, Shahid M, Dumat C, Niazi NK, Khalid S, Shah NS, Imran M, Khalid S (2019a) Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environ Sci Pollut Res 26:20018–20029

    Article  CAS  Google Scholar 

  • Tabassum RA, Shahid M, Niazi NK, Dumat C, Zhang Y, Imran M, Bakhat HF, Hussain I, Khalid S (2019b) Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. Int J Phytoremediation 21:509–518

    Article  CAS  PubMed  Google Scholar 

  • Tanboonchuy V, Grisdanurak N, Liao C-H (2012) Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. J Hazard Mater 205:40–46

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Su Y, Li Q, Gao S, Shang JK (2013) Mg-doping: a facile approach to impart enhanced arsenic adsorption performance and easy magnetic separation capability to α-fe 2 o 3 nanoadsorbents. J Mater Chem A 1:830–836

    Article  CAS  Google Scholar 

  • Thekkudan VN, Vaidyanathan VK, Ponnusamy SK, Charles C, Sundar S, Vishnu D, Anbalagan S, Vaithyanathan VK, Subramanian S (2016) Review on nanoadsorbents: a solution for heavy metal removal from wastewater. IET Nanobiotechnol 11:213–224

    Article  PubMed Central  Google Scholar 

  • Tian Y, Gao B, Morales VL, Wu L, Wang Y, Muñoz-Carpena R, Cao C, Huang Q, Yang L (2012) Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chem Eng J 210:557–563

    Article  CAS  Google Scholar 

  • Türk T, Alp İ (2014) Arsenic removal from aqueous solutions with Fe-hydrotalcite supported magnetite nanoparticle. J Ind Eng Chem 20:732–738

    Article  CAS  Google Scholar 

  • Vadahanambi S, Lee S-H, Kim W-J, Oh I-K (2013) Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47:10510–10517

    CAS  PubMed  Google Scholar 

  • Veličković Z, Vuković GD, Marinković AD, Moldovan M-S, Perić-Grujić AA, Uskoković PS, Ristić MĐ (2012) Adsorption of arsenate on iron (III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem Eng J 181:174–181

    Article  CAS  Google Scholar 

  • Vignola R, Grillo G, Sisto R, Capotorti G, Cesti P, Molinari M (2005) Synthetic zeolites as sorbent material for PRBs at industrially contaminated sites. IAHS Publ 298:105

    CAS  Google Scholar 

  • Vitela-Rodriguez AV, Rangel-Mendez JR (2013) Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles. J Environ Manag 114:225–231

    Article  CAS  Google Scholar 

  • Wang X, Guo Y, Yang L, Han M, Zhao J, Cheng X (2012) Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J Environ Anal Toxicol 2:154–158

    Article  Google Scholar 

  • Wang Y, Zhang Y, Zhang TC, Xiang G, Wang X, Yuan S (2020) Removal of trace arsenite through simultaneous photocatalytic oxidation and adsorption by magnetic Fe3O4@ PpPDA@ TiO2 core-shell nanoparticles. ACS Appl Nano Mater 3(8):8495–8504

    Article  CAS  Google Scholar 

  • Xi C, Wang R, Rao P, Zhang W, Yan L, Li G, Chai F, Cai Y, Luo T, Zhou X (2020) The fabrication and arsenic removal performance of cellulose nanocrystal-containing absorbents based on the “bridge joint” effect of iron ions. Carbohydr Polym 237:116129

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Liu Z, Shi Z (2014) Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J Environ Health Sci Eng 12:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu F, Sun S, Ma J, Han S (2015) Enhanced removal performance of arsenate and arsenite by magnetic graphene oxide with high iron oxide loading. Phys Chem Chem Phys 17:4388–4397

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Zhai L, Qiao T, Yu Y, Zhang J, Li D (2020) Efficient removal of As (V) from aqueous media by magnetic nanoparticles prepared with iron-containing water treatment residuals. Sci Rep 10:1–12

    Article  CAS  Google Scholar 

  • Zhang S, Niu H, Cai Y, Zhao X, Shi Y (2010) Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158:599–607

    Article  CAS  Google Scholar 

  • Zhang G, Ren Z, Zhang X, Chen J (2013) Nanostructured iron (III)-copper (II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res 47:4022–4031

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Higher Education Commission (Project Nos. 6425/Punjab/NRPU/R&D/HEC/2016 and 6396/Punjab/NRPU/R&D/HEC/2016), Pakistan for providing financial support. Drs. Nabeel Khan Niazi and Irshad Bibi are thankful to the University of Agriculture Faisalabad. Dr. Irshad Bibi acknowledges the support form COMSTEQ-TWAS research grant 2018 (18-268 RG/EAS/AS_C). Dr. Nabeel Niazi is thankful to University of Southern Queensland, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel Khan Niazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amen, R. et al. (2021). Developments in Nanoadsorbents for the Treatment of Arsenic-Contaminated Water. In: Kumar, N. (eds) Arsenic Toxicity: Challenges and Solutions. Springer, Singapore. https://doi.org/10.1007/978-981-33-6068-6_13

Download citation

Publish with us

Policies and ethics