Advertisement

A Review of Supersonic Turbines Based on Constant Volume Combustion Cycle

Conference paper
  • 119 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 680)

Abstract

In this paper, in response to the current demand for new aerospace power in the aerospace field, thermodynamic performance and thermal efficiency advantages of existing constant volume combustion cycles are reviewed. The main challenge in the practical implementation of Pressure Gain Combustion (PGC) into gas turbines and aero-engine is the lack of turbomachinery that can efficiently harvest work from the PGC exhaust gas. Therefore, this paper analyzes the supersonic inflow conditions with pressure, temperature and velocity pulsations at the outlet of the detonation combustion chamber, and puts forward the difficulties brought by the inflow conditions to the design of the turbine cascade. Secondly, this paper analyzes the aerodynamic characteristics of turbine cascade passage under supersonic inlet conditions, analyzes the influence of channel shock waves on aerodynamic losses, and expounds the importance of turbine under supersonic inlet conditions in detonation combustion cycle.

Keywords

Constant volume combustion cycle PGC Detonation combustion inflow condition Supersonic turbine 

Nomenclature

List of Symbols

βc

Pressure ratio of compressor [–]

α

Dimensionless heat absorption [–]

Q

Heat [J]

ρ

Density [kg/m3]

P

Pressure [Pa]

s

Entropy [J/(mol K)]

ηth

Thermal efficiency [–]

W

Output work [J]

H

Enthalpy [J/mol]

CP

Specific heat capacity at constant pressure [J/(kg K)]

Cv

Specific heat capacity at constant volume [J/(kg K)]

T

Temperature [K]

γ

Ratio of specific heats [–]

M

Mach number [–]

u

Axial velocity [m/s]

a

Speed of sound [m/s]

β

Shock angle [°]

θ

Airflow angle [°]

R

Gas constant [J/(mol K)]

Li,T

Flange work [J]

ζ

Correction coefficient

References

  1. 1.
    张恩慧 (2018) 定容燃烧在未来燃气轮机热力循环中的应用前景. Prospect of constant volume combustion in future gas turbine cycle. 科技视界 (032):42–43, 28Google Scholar
  2. 2.
    计自飞, 张会强, 谢峤峰 et al (2018) 连续旋转爆震涡轮发动机热力过程与性能分析. Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine. 清华大学学报 (自然科学版) 058(010):899–905Google Scholar
  3. 3.
    Kailasanath K (2000) Review of propulsion applications of detonation waves, AIAA J 1–81Google Scholar
  4. 4.
    Schawer D, Kailasanath K (2011) Numerical investigation of the physics of rotating detonation engines. In: Proceedings of the combustion instituteGoogle Scholar
  5. 5.
    Zhou R, Wu D, Wang JP (2016) Progress of continuously rotating detonation engines. Chin J Aeronaut 29(1):15–29CrossRefGoogle Scholar
  6. 6.
    邓君香, 严传俊, 郑龙席 et al (2008) 装有脉冲爆震主燃烧室的燃气涡轮发动机热力性能计算. Calculating performance of gas turbine engine with embedded PDC (pulse detonation combustor). 西北工业大学学报 026(003):362–367Google Scholar
  7. 7.
    王宇辉, 何修杰 (2017) 旋转爆轰发动机的研究进展. Advances in rotating detonation engine research. 南京航空航天大学学报 049(003):325–339Google Scholar
  8. 8.
    卢杰. 脉冲爆震涡轮发动机关键技术研究Google Scholar
  9. 9.
    Nordeen C, Schwer D, Schauer F, Hoke J, Cetegen B, Barber T (2011) Thermodynamic modeling of a rotating detonation engine. In: 49th AIAA aerospace sciences meetingGoogle Scholar
  10. 10.
    Frolov SM, Dubrovskii AV, Ivanov VS (2016) Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer. In: Progress in propulsion physics. EUCASS proceedings series Google Scholar
  11. 11.
    Van ZD, Envia E, Turner MG (2007) The attenuation of a shock wave by an aircraft engine axial turbine stage. In: Proceedings of the international symposium on airbreathing engines. Paper 2007–1260, BeijingGoogle Scholar
  12. 12.
    Fang W, Chunsheng W, Baoxing LI et al (2018) 连续旋转爆轰波传播过程试验研究. Experimental investigation on the propagation process of continuous rotating detonation wave. 固体火箭技术 041(006):688–693Google Scholar
  13. 13.
    Gray J, Vinkeloe J, Moeck J et al (2016) Thermodynamic evaluation of pulse detonation combustion for gas turbine power cycles. In: ASME turbo expo 2016Google Scholar
  14. 14.
    Heiser W, Pratt D (2002) Thermodynamic cycle analysis of pulse detonation engines. J Propul Power 18:68–76Google Scholar
  15. 15.
    Rankin BA, Fotia ML, Naples AG et al (2016) Overview of performance, application, and analysis of rotating detonation engine technologies. J Propul Power 1–13Google Scholar
  16. 16.
    Ishiyama C, Miyazaki K, Nakagami S et al (2016) Experimental study of research of centrifugal-compressor-radial-turbine type rotating detonation engine. In: Proceedings of the 52nd AIAA/SAE/ASEE joint propulsion conference, Salt Lake City. AIAAGoogle Scholar
  17. 17.
    Endo T, Masuda K, Watanabe W et al (2016) Reduction of air flow rate for pulse-detonation-turbine-engine operation by water-droplet injection. J Therm Sci Technol 11(2):JTST0022Google Scholar
  18. 18.
    Rasheed A, Tangirala VE, Vadervort CL et al (2013) Interactions of a pulsed detonation engine with a 2D blade cascade. AIAA JGoogle Scholar
  19. 19.
    Huang X, Guo Z, Liu K et al (2016) Experimental investigation on noise radiation characteristics of pulse detonation turbine engine. Proc Inst Mech Eng Part G J Aerosp Eng 0954410016636160Google Scholar
  20. 20.
    Wolański P (2015) Application of the continuous rotating detonation to gas turbine. Appl Mech Mater 782:3–12CrossRefGoogle Scholar
  21. 21.
    Welsh DJ, King PI, DeBarmore ND et al (2014) RDE integration with T63 turboshaft engine components. In: Proceedings of the 52nd aerospace sciences meeting, National Harbor Maryland: AIAA, 2014Google Scholar
  22. 22.
    Sousa J, Paniagua G, Collado ME (2017) Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Appl Energy 195:247–256CrossRefGoogle Scholar
  23. 23.
    何龙, 郑龙席, 邱华 et al (2012) Calculating performance of pulse detonation turbo engine. 脉冲爆震涡轮发动机性能计算. 推进技术 033(005):665–670Google Scholar
  24. 24.
    Tellefsen J, King P, Schauer F et al (2012) Analysis of an RDE with convergent nozzle in preparation for turbine integration. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace expositionGoogle Scholar
  25. 25.
    Griffin L, Dorney D (2000) Simulations of unsteady flow through the fastrac supersonic turbine. ASME J Turbomach 122(2):225–233CrossRefGoogle Scholar
  26. 26.
    Müller Breslau Str. 8 (2018) Comprehensive thermodynamic analysis of the Humphrey cycle for gas turbines with pressure gain combustion. J Energies 12, 18Google Scholar
  27. 27.
    Ma F, Choi JY, Yang V (2005) Thrust chamber dynamics and propulsive performance of multiple pulse detonation engines. J Propul Power 21:512–526Google Scholar
  28. 28.
    Bach E, Bohon M, Paschereit CO, Stathopoulos P (2018) Development of an instrumented guide vane set for RDC exhaust flow characterization. In: 2018 joint propulsion conference. American Institute of Aeronautics and Astronautics, Reston, VAGoogle Scholar
  29. 29.
    Andrus IQ, King PI (2007) Evaluation of a high bypass turbofan hybrid utilizing a pulsed detonation combustor. In: 43rd AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, AIAA 2007-5074Google Scholar
  30. 30.
    Andrus IQ (2007) Comparative analysis of a high bypass turbofan using a pulsed detonation combustor. Air Force Institute of TechnologyGoogle Scholar
  31. 31.
    Jorge S, Guillermo P (2015) Entropy minimization design approach of supersonic internal passages. Entropy 17(12):5593–5610CrossRefGoogle Scholar
  32. 32.
    Paniagua G, Iorio MC, Vinha N, Sousa J (2014) Design and analysis of pioneering high supersonic axial turbines. Int J Mech SciGoogle Scholar
  33. 33.
    Sousa J, Paniagua G, Collado-Morata E (2017) Analysis of the aerodynamic losses in a supersonic turbine. In: Proceedings of the ASME 2017 power conference joint with ICOPE-17, Charlotte, 26–30 June 2017. POWER-ICOPE2017-3624. https://doi.org/10.1115/POWER-ICOPE2017-3624
  34. 34.
    李晓丰, 肖俊峰, 王玮 et al (2016) Ideal thermodynamic cycle analysis of gas turbine based on detonation combustion. 基于爆震燃烧的燃气轮机理想热力循环分析. 西北工业大学学报 (001):112–117Google Scholar
  35. 35.
    Vutthivithayarak R, Braun EM, Lu FK (2012) On thermodynamic cycles for detonation engines. In: 28th international symposium on shock waves. Springer, Berlin HeidelbergGoogle Scholar
  36. 36.
    Lu Y, Roskilly AP, Yu X et al (2018) Technical feasibility study of scroll-type rotary gasoline engine: a compact and efficient small-scale Humphrey cycle engine. Appl Energy 221:67–74CrossRefGoogle Scholar
  37. 37.
    Wu YH, Ma FH, Yang V (2002) System performance and thermodynamic cycle analysis of air-breathing pulse detonation engines. 中國航空太空學會學刊 34(1):1–11Google Scholar
  38. 38.
    Andriani R, Ghezzi U, Pasini S (2010) Thermodynamic study of gas turbine engine with constant volume combustion. In: 46th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibitGoogle Scholar
  39. 39.
    Brophy C (2009) Benefits and challenges of pressure-gain combustion systems for gas turbines. Mech Eng 131(03)Google Scholar
  40. 40.
    Ghezzi U (1990) Motori per Aeromobili. CLUP, MilanoGoogle Scholar
  41. 41.
    Travis JT (2014) A computational investigation of a constant volume combustion jet engine. Dissertations & Theses GradworksGoogle Scholar
  42. 42.
    Kumazawa Y, Fujii J, Matsuo A et al (2016) Numerical study for rotating detonation propagation in a two-parallel-plane combustor. In: 52nd AIAA/SAE/ASEE joint propulsion conferenceGoogle Scholar
  43. 43.
    曾荣鹏 (2005) 超音速叶栅内的激波系及其与附面层相互作用的数值研究. 华北电力大学 (北京)Google Scholar
  44. 44.
    Fujii J, Kumazawa Y, Matsuo A et al (2016) Numerical investigation on detonation velocity in rotating detonation engine chamber. Proc Combust Inst S1540748916302139Google Scholar
  45. 45.
    Sun J et al (2018) Plume flowfield and propulsive performance analysis of a rotating detonation engine. Aerosp Sci Technol.  https://doi.org/10.1016/j.ast.2018.08.024CrossRefGoogle Scholar
  46. 46.
    Anand V, George AS, Gutmark E (2015) Hollow rotating detonation combustorGoogle Scholar
  47. 47.
    Roy GD et al (2004) Pulse detonation propulsion: challenges, current status, and future perspective. Progr Energy Combust SciGoogle Scholar
  48. 48.
    Tellefsen JR et al (2012) Build up and operation of an axial turbine driven by a rotary detonation engine. USAGoogle Scholar
  49. 49.
    Liu Z, Braun J, Paniagua G (2017) Performance of axial turbines exposed to large fluctuations. In: Proceedings of the 53rd AIAA/SAE/ASEE joint propulsion conference, Atlanta, 10–12 July 2017. AIAA 2017-4817. https://doi.org/10.2514/6.2017-4817
  50. 50.
    Braun J, Saracoglu BH, Paniagua G (2016) Unsteady performance of rotating detonation engines with different exhaust nozzles. J Propul Power 1–10Google Scholar
  51. 51.
    Xue S, Liu H, Zhou L et al (2018) Experimental research on rotating detonation with liquid hypergolic propellants. Chin J Aeronaut 31(12):18–24Google Scholar
  52. 52.
    Vinha N, Paniagua G, Sousa J et al (2016) Axial bladeless turbine suitable for high supersonic flows. J Propul Power 32(4):V02CT38A061Google Scholar
  53. 53.
    Eric W et al (2006) Stagnation Hugoniot analysis for steady combustion waves in propulsion systems. J Propul PowerGoogle Scholar
  54. 54.
    Nordeen C, Schwer D, Schauer F et al (2011) Thermodynamic modeling of a rotating detonation engine. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. Pleiades PublishingGoogle Scholar
  55. 55.
    费微微, 单勇, 王敏敏 et al (2016) Numerical study of supersonic film cooling in supersonic turbine cascade. 超声速涡轮叶栅超声速气膜冷却数值研究. 推进技术 037(005):916–921Google Scholar
  56. 56.
    Goldman LJ (1972) Supersonic turbine design and performance, 26–30 Mar 1972Google Scholar
  57. 57.
    Liu Z, Braun J, Paniagua G (2018) Characterization of a supersonic turbine downstream of a rotating detonation combustor. J Eng Gas Turb Power. https://doi.org/10.1115/1.4040815
  58. 58.
    Paniagua G, Lorio MC, Vinha N, Sousa J (2014) Design and analysis of pioneering high supersonic axial turbines. Int J Mech Sci 89:65–77.  https://doi.org/10.1016/j.ijmecsci.2014.08.014CrossRefGoogle Scholar
  59. 59.
    Sousa J, Paniagua G, Saavedra J (2017) Aerodynamic response of internal passages to pulsating inlet supersonic conditions. Comput Fluids 149:31–40. https://doi.org/10.1016/j.compßuid.2017.03.005MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Harbin Institute of TechnologyHarbinChina

Personalised recommendations