Abstract
Genetic factors play a significant but complex role in antidepressant (AD) response and tolerability. During recent years, there is growing enthusiasm in the promise of pharmacogenetic/pharmacogenomic (PGx) tools for optimizing and personalizing treatment outcomes for patients with major depressive disorder (MDD). The influence of pharmacokinetic and pharmacodynamic genes on response and tolerability has been investigated, including those encoding the cytochrome P450 superfamily, P-glycoprotein, monoaminergic transporters and receptors, intracellular signal transduction pathways, and the stress hormone system. Genome-wide association studies are also identifying new genetic variants associated with AD response phenotypes, which, combined with methods such as polygenic risk scores (PRS), is opening up new avenues for novel personalized treatment approaches for MDD. This chapter describes the basic concepts in PGx of AD response, reviews the major pharmacokinetic and pharmacodynamic genes involved in AD outcome, discusses PRS as a promising approach for predicting AD efficacy and tolerability, and addresses key challenges to the development and application of PGx tests.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hillhouse TM, Porter JH (2015) A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 23(1):1–21
Fabbri C, Crisafulli C, Calabrò M, Spina E, Serretti A (2016) Progress and prospects in pharmacogenetics of antidepressant drugs. Expert Opin Drug Metab Toxicol 12(10):1157–1168
Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163(1):28–40
Cohen ZD, DeRubeis RJ (2018) Treatment selection in depression. Annu Rev Clin Psychol 14(1):209–236
Tomba E, Fava GA (2012) Treatment selection in depression: the role of clinical judgment. Psychiatr Clin North Am 35(1):87–98
Fabbri C, Serretti A (2018) Clinical application of antidepressant pharmacogenetics: Considerations for the design of future studies. Neurosci Lett 726:133651
Franchini L, Serretti A, Gasperini M, Smeraldi E (1998) Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J Psychiatr Res 32(5):255–259
G L, Rh P, Aj R, Fj M (2009) Pharmacogenetics studies in STAR*D: strengths, limitations, and results. Psychiatr Serv 60(11):1446–1457
Amare AT, Schubert KO, Baune BT (2017) Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry. EPMA J. 8(3):211–227
Pharmacogenetics BMG (2018) Psychiatric care: a review and commentary. J Ment Health Clin Psychol 2(2):17–24
Müller DJ, Rizhanovsky Z (2020) From the origins of pharmacogenetics to first applications in psychiatry. Pharmacopsychiatry 53(4):155–161
Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF et al (2019) Pharmacogenomics. Lancet 394(10197):521–532
Rioux PP (2000) Clinical trials in pharmacogenetics and pharmacogenomics: methods and applications. Am J Health Syst Pharm 57(9):887–898
Robarge JD, Li L, Desta Z, Nguyen A, Flockhart DA (2007) The star-allele nomenclature: retooling for translational genomics. Clin Pharmacol Ther 82(3):244–248
Kalman LV, Agúndez J, Appell ML, Black JL, Bell GC, Boukouvala S et al (2016) Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting. Clin Pharmacol Ther 99(2):172–185
Porcelli S, Fabbri C, Spina E, Serretti A, Ronchi DD (2011) Genetic polymorphisms of cytochrome P450 enzymes and antidepressant metabolism. Expert Opin Drug Metabolism Toxicol 7(9):1101–1115
Breitenstein B, Scheuer S, Brückl TM, Meyer J, Ising M, Uhr M et al (2016) Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: Results from a randomized clinical study. J Psychiatr Res 73:86–95
van der Weide J, Hinrichs JWJ (2006) The influence of cytochrome P450 pharmacogenetics on disposition of common antidepressant and antipsychotic medications. Clin Biochem Rev 27(1):17–25
Walden LM, Brandl EJ, Tiwari AK, Cheema S, Freeman N, Braganza N et al (2019) Genetic testing for CYP2D6 and CYP2C19 suggests improved outcome for antidepressant and antipsychotic medication. Psychiatry Res 279:111–115
Hicks J, Sangkuhl K, Swen J, Ellingrod V, Müller D, Shimoda K et al (2017) Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 102(1):37–44
Jarvis JP, Peter AP, Shaman JA (2019) Consequences of CYP2D6 copy-number variation for pharmacogenomics in psychiatry. Front Psychiatry 10:432
Huezo-Diaz P, Perroud N, Spencer EP, Smith R, Sim S, Virding S et al (2012) CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP. J Psychopharmacol (Oxford) 26(3):398–407
Tsai M-H, Lin K-M, Hsiao M-C, Shen WW, Lu M-L, Tang H-S et al (2010) Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics 11(4):537–546
Suzuki Y, Sugai T, Fukui N, Watanabe J, Ono S, Inoue Y et al (2011) CYP2D6 genotype and smoking influence fluvoxamine steady-state concentration in Japanese psychiatric patients: lessons for genotype-phenotype association study design in translational pharmacogenetics. J Psychopharmacol (Oxford) 25(7):908–914
Charlier C, Broly F, Lhermitte M, Pinto E, Ansseau M, Plomteux G (2003) Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit 25(6):738
Schenk PW, van Fessem M a C, Verploegh-Van Rij S, Mathot R a A, van Gelder T, Vulto AG et al (2008) Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry 13(6):597–605
Ueda M, Hirokane G, Morita S, Okawa M, Watanabe T, Akiyama K et al (2006) The impact of CYP2D6 genotypes on the plasma concentration of paroxetine in Japanese psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 30(3):486–491
Sawamura K, Suzuki Y, Someya T (2004 Oct) Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine. Eur J Clin Pharmacol 60(8):553–557
Mcalpine DE, Biernacka JM, Mrazek DA, O’kane DJ, Stevens SR, Langman LJ et al (2011) Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit 33(1):14–20
Grasmäder K, Verwohlt PL, Rietschel M, Dragicevic A, Müller M, Hiemke C et al (2004) Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 60(5):329–336
Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M et al (2004) CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants—a pilot study. Clin Pharmacol Ther 75(5):386–393
Zastrozhin MS, Skryabin VY, Smirnov VV, Grishina EA, Ryzhikova KA, Chumakov EM et al (2019) Effects of CYP2D6 activity on the efficacy and safety of mirtazapine in patients with depressive disorders and comorbid alcohol use disorder. Can J Physiol Pharmacol 97(8):781–785
Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ et al (2008) Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLOS One 3(4):e1872
Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E (1997) Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol. 51(5):395
Murata Y, Kobayashi D, Imuta N, Haraguchi K, Ieiri I, Nishimura R et al (2010 Feb) Effects of the serotonin 1A, 2A, 2C, 3A, and 3B and serotonin transporter gene polymorphisms on the occurrence of paroxetine discontinuation syndrome. J Clin Psychopharmacol 30(1):11
Murphy GM, Kremer C, Rodrigues HE, Schatzberg AF (2003) Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 160(10):1830–1835
Shams MEE, Arneth B, Hiemke C, Dragicevic A, Müller MJ, Kaiser R et al (2006) CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 31(5):493–502
Serretti A, Calati R, Massat I, Linotte S, Kasper S, Lecrubier Y et al (2009) Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int Clin Psychopharmacol 24(5):250
Suzuki Y, Sawamura K, Someya T (2006) Polymorphisms in the 5-hydroxytryptamine 2A receptor and cytochrome P 4502D6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacol 31(4):825–831
Ng C, Sarris J, Singh A, Bousman C, Byron K, Peh LH et al (2013) Pharmacogenetic polymorphisms and response to escitalopram and venlafaxine over 8 weeks in major depression. Human Psychopharmacol 28(5):516–522
Belle DJ, Singh H (2008) Genetic factors in drug metabolism. Am Fam Physician 77(11):1553–1560
Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Müller DJ, Shimoda K et al (2017) Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 102(1):37–44
Yu B-N, Chen G-L, He N, Ouyang D-S, Chen X-P, Liu Z-Q et al (2003) Pharmacokinetics of citalopram in relation to genetic polymorphism of Cyp2c19. Drug Metab Dispos 31(10):1255–1259
Jukić MM, Haslemo T, Molden E, Ingelman-Sundberg M (2018) Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients. Am J Psychiatry 175(5):463–470
Schenk PW, van Vliet M, Mathot R a A, van Gelder T, Vulto AG, van Fessem M a C et al (2010) The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients. Pharmacogenomics J 10(3):219–225
Rudberg I, Hermann M, Refsum H, Molden E (2008) Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol 64(12):1181
Wang J-H, Liu Z-Q, Wang W, Chen X-P, Shu Y, He N et al (2001) Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 70(1):42–47
Aldrich SL, Poweleit EA, Prows CA, Martin LJ, Strawn JR, Ramsey LB (2019) Influence of CYP2C19 metabolizer status on escitalopram/citalopram tolerability and response in youth with anxiety and depressive disorders. Front Pharmacol 10:99
Mrazek DA, Biernacka JM, O’Kane DJ, Black JL, Cunningham JM, Drews MS et al (2011) CYP2C19 variation and citalopram response. Pharmacogenet Genomics 21(1):1–9
Fabbri C, Tansey KE, Perlis RH, Hauser J, Henigsberg N, Maier W et al (2018) Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: meta-analysis of data from genome-wide association studies. Eur Neuropsychopharmacol 28(8):945–954
Hodgson K, Tansey KE, Uher R, Dernovšek MZ, Mors O, Hauser J et al (2015) Exploring the role of drug-metabolising enzymes in antidepressant side effects. Psychopharmacology 232(14):2609–2617
LLerena A, Dorado P, Berecz R, González AP (2004) Peñas-LLedó EM. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol 59(12):869–873
Scordo MG, Spina E, Dahl M-L, Gatti G, Perucca E (2005) Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 97(5):296–301
Bousman C, Maruf AA, Müller DJ (2019) Towards the integration of pharmacogenetics in psychiatry: a minimum, evidence-based genetic testing panel. Curr Opin Psychiatry 32(1):7–15
Lin K-M, Tsou H-H, Tsai I-J, Hsiao M-C, Hsiao C-F, Liu C-Y et al (2010) CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics 11(11):1535–1543
Black JL III, O’Kane DJ, Mrazek DA (2007) The impact of CYP allelic variation on antidepressant metabolism: a review. Expert Opin Drug Metab Toxicol 3(1):21–31
Akamine Y, Yasui-Furukori N, Ieiri I, Uno T (2012) Psychotropic drug–drug interactions involving P-glycoprotein. CNS Drugs 26(11):959–973
Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 18(3):157–169
Breitenstein B, Brückl TM, Ising M, Müller-Myhsok B, Holsboer F, Czamara D (2015) ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 168B(4):274–283
Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M et al (2008) Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57(2):203–209
Breitenstein B, Scheuer S, Pfister H, Uhr M, Lucae S, Holsboer F et al (2014) The clinical application of ABCB1 genotyping in antidepressant treatment: a pilot study. CNS Spectrums 19(2):165–175
Binder EB, Holsboer F (2006) Pharmacogenomics and antidepressant drugs. Ann Med 38(2):82–94
Licinio J, Wong M-L (2011 Mar) Pharmacogenomics of antidepressant treatment effects. Dialogues Clin Neurosci 13(1):63–71
Mrazek DA, Rush AJ, Biernacka JM, O’Kane DJ, Cunningham JM, Wieben ED et al (2009) SLC6A4 variation and citalopram response. Am J Med Genet B Neuropsychiatr Genet 150B(3):341–351
Huezo-Diaz P, Uher R, Smith R, Rietschel M, Henigsberg N, Marusic A et al (2009 Jul) Moderation of antidepressant response by the serotonin transporter gene. Br J Psychiatry 195(1):30–38
Porcelli S, Fabbri C, Serretti A (2012) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol 22(4):239–258
Hu X-Z, Rush AJ, Charney D, Wilson AF, Sorant AJM, Papanicolaou GJ et al (2007 Jul) Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatry 64(7):783–792
Zhu J, Klein-Fedyshin M, Stevenson JM (2017) Serotonin transporter gene polymorphisms and selective serotonin reuptake inhibitor tolerability: review of pharmacogenetic evidence. Pharmacotherapy 37(9):1089–1104
Kraft JB, Slager SL, McGrath PJ, Hamilton SP (2005) Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatry 58(5):374–381
Lemonde S, Du L, Bakish D, Hrdina P, Albert PR (2004) Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 7(4):501–506
Serretti A, Artioli P, Quartesan R (2005) Pharmacogenetics in the treatment of depression: pharmacodynamic studies. Pharmacogenet Genomics 15(2):61–67
Kato M, Fukuda T, Wakeno M, Fukuda K, Okugawa G, Ikenaga Y et al (2006) Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology 53(4):186–195
Choi M-J, Kang R-H, Ham B-J, Jeong H-Y, Lee M-S (2005) Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 52(3):155–162
Minov C, Baghai TC, Schüle C, Zwanzger P, Schwarz MJ, Zill P et al (2001) Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 303(2):119–122
Lee S-H, Lee K-J, Lee H-J, Ham B-J, Ryu S-H, Lee M-S (2005) Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin Neurosci 59(2):140–145
Wu WH, Huo SJ, Cheng CY, Hong CJ, Tsai SJ (2001) Association study of the 5-HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology 44(4):172–175
Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E (2001) Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 6(5):586–592
Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E (2001 Oct) Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol 11(5):375–380
Serretti A, Zanardi R, Cusin C, Rossini D, Lilli R, Lorenzi C et al (2001) No association between dopamine D2 and D4 receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Res 104(3):195–203
Garriock HA, Delgado P, Kling MA, Carpenter LL, Burke M, Burke WJ et al (2006) Number of risk genotypes is a risk factor for major depressive disorder: a case control study. Behav Brain Funct. 2:24
Zill P, Baghai TC, Engel R, Zwanzger P, Schüle C, Minov C et al (2003) Beta-1-adrenergic receptor gene in major depression: Influence on antidepressant treatment response. Am J Med Genet B Neuropsychiatr Genet 120B(1):85–89
Crowley JJ, Lipsky RH, Lucki I, Berrettini WH (2008 Oct) Variation in the genes encoding vesicular monoamine transporter 2 and beta-1 adrenergic receptor and antidepressant treatment outcome. Psychiatr Genet 18(5):248–251
Zill P, Baghai TC, Zwanzger P, Schüle C, Minov C, Riedel M et al (2000) Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 11(9):1893–1897
Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D et al (2003) SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol 13(2):117–122
Lee H-J, Cha J-H, Ham B-J, Han C-S, Kim Y-K, Lee S-H et al (2004) Association between a G-protein β3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 4(1):29–33
Keers R, Bonvicini C, Scassellati C, Uher R, Placentino A, Giovannini C et al (2011) Variation in GNB3 predicts response and adverse reactions to antidepressants. J Psychopharmacol (Oxford) 25(7):867–874
Joyce PR, Mulder RT, Luty SE, McKenzie JM, Miller AL, Rogers GR et al (2003) Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol 6(4):339–346
Kang R-H, Hahn S-W, Choi M-J, Lee M-S (2007) Relationship between G-protein beta-3 subunit C825T polymorphism and mirtazapine responses in Korean patients with major depression. Neuropsychobiology. 56(1):1–5
Hong C-J, Chen T-J, YW-Y Y, Tsai S-J (2006) Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J. 6(1):27–33
Tsai S-J, Cheng C-Y, YW-Y Y, Chen T-J, Hong C-J (2003) Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet 123B(1):19–22
Yoshida K, Higuchi H, Kamata M, Takahashi H, Inoue K, Suzuki T et al (2007) The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J Psychopharmacol (Oxford) 21(6):650–656
Choi M-J, Kang R-H, Lim S-W, Oh K-S, Lee M-S (2006) Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res. 1118(1):176–182
Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62(1):77–91
Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D et al (2011) Pharmacogenetics of antidepressants. Front Pharmacol 2:6
Tansey KE, Guipponi M, Hu X, Domenici E, Lewis G, Malafosse A et al (2013) Contribution of common genetic variants to antidepressant response. Biol Psychiatry 73(7):679–682
Brown L, Eum S, Haga SB, Strawn JR, Zierhut H (2020) Clinical utilization of pharmacogenetics in psychiatry – perspectives of pharmacists, genetic counselors, implementation science, clinicians, and industry. Pharmacopsychiatry 53(4):162–173
Winner JG, Carhart JM, Altar A, Allen JD, Prospective DBMA (2013) Randomized, double-blind study assessing the clinical impact of integrated pharmacogenomic testing for major depressive disorder. Discov Med 16(89):219–227
Singh AB (2015) Improved ANTIDEPRESSANT REMISSION IN MAJOR DEPRESSION VIA A PHARMACOKINETIC PATHWAY POLYGENE PHARMACOGENETIC REPORT. Clin Psychopharmacol Neurosci. 13(2):150–156
Elliott LS, Henderson JC, Neradilek MB, Moyer NA, Ashcraft KC, Thirumaran RK (2017) Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: a prospective pilot randomized controlled trial. PLOS ONE 12(2):e0170905
Pérez V, Salavert A, Espadaler J, Tuson M, Saiz-Ruiz J, Sáez-Navarro C et al (2017) Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: results of a randomized, double-blind clinical trial. BMC Psychiatry 17(1):250
Bradley P, Shiekh M, Mehra V, Vrbicky K, Layle S, Olson MC et al (2018) Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: a randomized clinical trial demonstrating clinical utility. J Psychiatr Res 96:100–107
Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry J-M, Bondolfi G et al (2008) CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monitoring 30(4):474
Kuo H-W, Liu SC, Tsou H-H, Liu S-W, Lin K-M, Lu S-C et al (2013) CYP1A2 genetic polymorphisms are associated with early antidepressant escitalopram metabolism and adverse reactions. Pharmacogenomics. 14(10):1191–1201
Ozbey G, Yucel B, Taycan SE, Kan D, Bodur NE, Arslan T et al (2014) ABCB1 C3435T polymorphism is associated with susceptibility to major depression, but not with a clinical response to citalopram in a Turkish population. Pharmacol Rep 66(2):235–238
Schatzberg AF, DeBattista C, Lazzeroni LC, Etkin A, Murphy GM, Williams LM (2015) ABCB1 genetic effects on antidepressant outcomes: a report from the iSPOT-D trial. Am J Psychiatry 172(8):751–759
Chang HH, Chou C-H, Yang YK, Lee IH, Chen PS (2015) Association between ABCB1 polymorphisms and antidepressant treatment response in Taiwanese major depressive patients. Clin Psychopharmacol Neurosci 13(3):250–255
Ozbey G, Celikel FC, Cumurcu BE, Kan D, Yucel B, Hasbek E et al (2017) Influence of ABCB1 polymorphisms and serum concentrations on venlafaxine response in patients with major depressive disorder. Nord J Psychiatry 71(3):230–237
Kraft JB, Peters EJ, Slager SL, Jenkins GD, Reinalda MS, McGrath PJ et al (2007) Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatry 61(6):734–742
Murphy GM, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF (2004 Nov) Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry. 61(11):1163–1169
Serretti A, Kato M, De Ronchi D, Kinoshita T (2007) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry. 12(3):247–257
Taylor MJ, Sen S, Bhagwagar Z (2010) Antidepressant response and the serotonin transporter gene-linked polymorphic region. Biol Psychiatry. 68(6):536–543
YW-Y Y, Tsai S-J, Liou Y-J, Hong C-J, Chen T-J (2006) Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol. 16(7):498–503
Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M et al (2002) Monoamine oxidase: A gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 26(7–8):1279–1283
Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R et al (2004) Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 9(12):1075–1082
Lee H-Y, Kang R-H, Han S-W, Paik J-W, Chang HS, Jeong YJ et al (2009) Association of glucocorticoid receptor polymorphisms with the susceptibility to major depressive disorder and treatment responses in Korean depressive patients. Acta Neuropsychiatrica. 21(1):11–17
Nouraei H, Firouzabadi N, Mandegary A, Zomorrodian K, Bahramali E, Shayesteh MRH et al (2018) Glucocorticoid receptor genetic variants and response to fluoxetine in major depressive disorder. J Neuropsychiatry Clin Neurosci 30(1):45–50
van Rossum EFC, Binder EB, Majer M, Koper JW, Ising M, Modell S et al (2006) Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 59(8):681–688
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Islam, F., Gorbovskaya, I., Müller, D.J. (2021). Pharmacogenetic/Pharmacogenomic Tests for Treatment Prediction in Depression. In: Kim, YK. (eds) Major Depressive Disorder. Advances in Experimental Medicine and Biology, vol 1305. Springer, Singapore. https://doi.org/10.1007/978-981-33-6044-0_13
Download citation
DOI: https://doi.org/10.1007/978-981-33-6044-0_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-33-6043-3
Online ISBN: 978-981-33-6044-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)