Skip to main content

Principles, Materials, and Fabrication Methods of Microfluidics

  • Chapter
  • First Online:
Microfluidics for Assisted Reproduction in Animals

Abstract

Microfluidics is an emerging field of research for the manipulation of fluids in microstructures with dimensions of tens to hundreds of micrometers. Microfluidics is characterized by the interplay between physics, material sciences, and engineering. The fluid flow in microscale differs from the macroscale, and it can be discussed with fundamental principles such as laminar flow, diffusion, surface tension, and electrokinetic forces. Material selection plays a critical role in the design and fabrication of microfluidic devices. Rigidity, softness, compatibility to solvents and chemicals, permeability to oxygen, and optical transparency are some of the parameters of the materials need to be considered for the fabrication of the devices. Micromachining, lithography, 3D printing, and nanofabrication are being employed for the fabrication of microfluidic devices. Droplet-based and digital microfluidics revolutionized the field of microfluidics specifically in DNA, protein, and enzyme-based assays. In this chapter, we summarized the principles of fluid flow and highlighted the characteristics of the materials which are being used for the fabrication of microfluidic devices. This chapter also presents the fabrication methods of microfluidic devices with recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNA:

Deoxyribonucleic acid

GPa:

Gigapascals

PDMS:

Polydimethylsiloxane

Pe :

The Peclet number

PMMA:

Poly(methyl methacrylate)

Re :

Reynolds number

RNA:

Ribonucleic acid

Sh :

Sherwood numbers

UV:

Ultraviolet

References

  • Abgrall, P., Conedera, V., Camon, H., Gue, A. M., & Nguyen, N. T. (2007). SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis, 28(24), 4539-4551.

    Google Scholar 

  • Adkins, J., Boehle, K., & Henry, C. (2015). Electrochemical paper-based microfluidic devices. Electrophoresis, 36(16), 1811-1824.

    Google Scholar 

  • Altissimo, M. E-beam lithography for micro-/nanofabrication. Biomicrofluidics 2010, 4, 2–7.

    Google Scholar 

  • Arivarasi, A., & Kumar, A. (2019). Classification of challenges in 3D printing for combined electrochemical and microfluidic applications: a review. Rapid Prototyping Journal.

    Google Scholar 

  • Attia, U. M., Marson, S., & Alcock, J. R. (2009). Micro-injection moulding of polymer microfluidic devices. Microfluidics and nanofluidics, 7(1), 1.

    Google Scholar 

  • Barbulovic-Nad, I., Yang, H., Park, P. S., & Wheeler, A. R. (2008). Digital microfluidics for cell-based assays. Lab on a Chip, 8(4), 519-526.

    Google Scholar 

  • Bayraktar, T., & Pidugu, S. B. (2006). Characterization of liquid flows in microfluidic systems. International Journal of Heat and Mass Transfer, 49(5-6), 815-824.

    Google Scholar 

  • Beebe, D. J., Mensing, G. A., & Walker, G. M. (2002a). Physics and applications of microfluidics in biology. Annual review of biomedical engineering, 4(1), 261-286.

    Google Scholar 

  • Beebe, D. J., Mensing, G. A., & Walker, G. M. (2002b). Physics and applications of microfluidics in biology. Annual review of biomedical engineering, 4(1), 261-286.

    Google Scholar 

  • Bjorkholm, J.E. EUV Lithography—The Successor to Optical Lithography? Intel Technol. J. 1998, 3, 1–8.

    Google Scholar 

  • Burdick, J. A., Khademhosseini, A., & Langer, R. (2004). Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir, 20(13), 5153-5156.

    Google Scholar 

  • Çetin, B., & Li, D. (2011). Dielectrophoresis in microfluidics technology. Electrophoresis, 32(18), 2410-2427.

    Google Scholar 

  • Chantal G. Khan Malek, Laser processing for bio-microfluidics applications, 2006, Anal Bioanal Chem 385: 1351–1361.

    Google Scholar 

  • Chen, C., Mehl, B. T., Munshi, A. S., Townsend, A. D., Spence, D. M., & Martin, R. S. (2016). 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review. Analytical Methods, 8(31), 6005-6012.

    Google Scholar 

  • Chen, Y., Zhang, L., & Chen, G. (2008). Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips. Electrophoresis, 29(9), 1801-1814.

    Google Scholar 

  • Cheng, Z., Gu, Y., Li, S., Wang, Y., Chen, H., Cheng, J., & Liu, P. (2017). Enclosed casting of epoxy resin for rapid fabrication of rigid microfluidic chips. Sensors and Actuators B: Chemical, 252, 785-793.

    Google Scholar 

  • Chérif, S. M., & Hennequin, J. F. (1997). Submicron structures in thin layers by electron beam lithography and ion beam sputtering. Journal of magnetism and magnetic materials, 165(1-3), 504-507.

    Google Scholar 

  • Chung, B. G., Lee, K. H., Khademhosseini, A., & Lee, S. H. (2012). Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab on a Chip, 12(1), 45-59.

    Google Scholar 

  • Chung, C., Chen, Y. J., Chen, P. C., & Chen, C. Y. (2015). Fabrication of PDMS passive micromixer by lost-wax casting. International journal of precision engineering and manufacturing, 16(9), 2033-2039.

    Google Scholar 

  • Coelho, B., Veigas, B., Fortunato, E., Martins, R., Águas, H., Igreja, R., & Baptista, P. V. (2017). Digital microfluidics for nucleic acid amplification. Sensors, 17(7), 1495.

    Google Scholar 

  • Çoğun, F., Yıldırım, E., & Sahir Arikan, M. A. (2017). Investigation on replication of microfluidic channels by hot embossing. Materials and Manufacturing Processes, 32(16), 1838-1844.

    Google Scholar 

  • Cross, G.L.W. The production of nanostructures by mechanical forming. J. Phys. D Appl. Phys. 2006, 39.

    Google Scholar 

  • D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, G. M. Whitesides, Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser, 2003, Adv Mater 15(1):62– 65.

    Google Scholar 

  • Dertinger, S. K., Chiu, D. T., Jeon, N. L., & Whitesides, G. M. (2001). Generation of gradients having complex shapes using microfluidic networks. Analytical Chemistry, 73(6), 1240-1246.

    Google Scholar 

  • Domansky, K., Sliz, J. D., Wen, N., Hinojosa, C., Thompson, G., Fraser, J. P., ... & Ingber, D. E. (2017). SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. Microfluidics and Nanofluidics, 21(6), 107.

    Google Scholar 

  • Dungchai, W., Chailapakul, O., & Henry, C. S. (2009). Electrochemical detection for paper-based microfluidics. Analytical chemistry, 81(14), 5821-5826.

    Google Scholar 

  • Dungchai, W., Chailapakul, O., & Henry, C. S. (2011). A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, 136(1), 77-82.

    Google Scholar 

  • El-Kareh, B. (1995) Lithography. In Fundamentals of Semiconductor Processing Technology (pp. 169-260). Springer, Boston, MA.

    Google Scholar 

  • Erol, O., Pantula, A., Liu, W., & Gracias, D. H. (2019). Transformer hydrogels: A review. Advanced Materials Technologies, 4(4), 1900043.

    Google Scholar 

  • F. Bianchi, Y. Chevelot, H. J. Mathieu, H. H. Girault, Photomodification of polymer microchannels induced by static and dynamic excimer ablation: effect on the electroosmotic flow, 2001, Anal Chem 73:3845–3853.

    Google Scholar 

  • Fallahi, H., Zhang, J., Phan, H. P., & Nguyen, N. T. (2019). Flexible microfluidics: fundamentals, recent developments, and applications. Micromachines, 10(12), 830.

    Google Scholar 

  • Friend, J., & Yeo, L. (2010). Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics, 4(2), 026502.

    Google Scholar 

  • Fu, G., Tor, S. B., Hardt, D. E., & Loh, N. H. (2011). Effects of processing parameters on the micro-channels replication in microfluidic devices fabricated by micro injection molding. Microsystem technologies, 17(12), 1791-1798.

    Google Scholar 

  • Gaal, G., Mendes, M., de Almeida, T. P., Piazzetta, M. H., Gobbi, Â. L., Riul Jr, A., & Rodrigues, V. (2017). Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing. Sensors and Actuators B: Chemical, 242, 35-40.

    Google Scholar 

  • Geng, H., Feng, J., Stabryla, L. M., & Cho, S. K. (2017). Dielectrowetting manipulation for digital microfluidics: Creating, transporting, splitting, and merging of droplets. Lab on a Chip, 17(6), 1060-1068.

    Google Scholar 

  • Germain, C., Charron, L., Lilge, L., & Tsui, Y. Y. (2007). Electrodes for microfluidic devices produced by laser induced forward transfer. Applied surface science, 253(19), 8328-8333.

    Google Scholar 

  • Gilet, T., Terwagne, D., & Vandewalle, N. (2009). Digital microfluidics on a wire. Applied physics letters, 95(1), 014106.

    Google Scholar 

  • Goral, V. N., Hsieh, Y. C., Petzold, O. N., Faris, R. A., & Yuen, P. K. (2010). Hot embossing of plastic microfluidic devices using poly (dimethylsiloxane) molds. Journal of Micromechanics and Microengineering, 21(1), 017002.

    Google Scholar 

  • Gravesen, P., Branebjerg, J., & Jensen, O. S. (1993). Microfluidics-a review. Journal of micromechanics and microengineering, 3(4), 168.

    Google Scholar 

  • Grosse, A., Grewe, M., & Fouckhardt, H. (2001). Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. Journal of micromechanics and microengineering, 11(3), 257.

    Google Scholar 

  • Grzelczak, M.; Vermant, J.; Furst, E. M., et al. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4 (7), 3591–3605.

    Google Scholar 

  • Guo, J., Liu, K., Wang, Z., & Tnay, G. L. (2017). Magnetic field-assisted finishing of a mold insert with curved microstructures for injection molding of microfluidic chips. Tribology International, 114, 306-314.

    Google Scholar 

  • Hardt, S., & Schönfeld, F. (2007). Microfluidics: Fundamentals and engineering concepts. In Microfluidic technologies for miniaturized analysis systems (pp. 1-58). Springer, Boston, MA.

    Google Scholar 

  • He, Y., Wu, Y., Fu, J. Z., & Wu, W. B. (2015). Fabrication of paper-based microfluidic analysis devices: a review. Rsc Advances, 5(95), 78109-78127.

    Google Scholar 

  • He, Y., Wu, Y., Fu, J. Z., Gao, Q., & Qiu, J. J. (2016). Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis, 28(8), 1658-1678.

    Google Scholar 

  • Holmes, D., & Gawad, S. (2010). The application of microfluidics in biology. In Microengineering in biotechnology (pp. 55-80). Humana Press, Totowa, NJ.

    Google Scholar 

  • Iliescu, C., Chen, B., & Miao, J. (2008). On the wet etching of Pyrex glass. Sensors and actuators A: Physical, 143(1), 154-161.

    Google Scholar 

  • Iliescu, C., Taylor, H., Avram, M., Miao, J., & Franssila, S. (2012). A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics, 6(1), 016505.

    Google Scholar 

  • Ismagilov, R. F., Rosmarin, D., Kenis, P. J., Chiu, D. T., Zhang, W., Stone, H. A., & Whitesides, G. M. (2001). Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch. Analytical chemistry, 73(19), 4682-4687.

    Google Scholar 

  • Isobe, G.; Kanno, I.; Kotera, H.; Yokokawa, R. Perfusable multi-scale channels fabricated by integration of nanoimprint lithography (NIL) and UV lithography (UVL). Microelectron. Eng. 2012, 98, 58–63

    Google Scholar 

  • J. S. Rossier, P. Bercier, A. Schwarz, S. Loridant, H. H. Girault, Topography, crystallinity and wettability of photo ablated PET surfaces, 1999, Langmuir 15:5173–5178.

    Google Scholar 

  • Jeon, N. L., Dertinger, S. K., Chiu, D. T., Choi, I. S., Stroock, A. D., & Whitesides, G. M. (2000). Generation of solution and surface gradients using microfluidic systems. Langmuir, 16(22), 8311-8316.

    Google Scholar 

  • Juncker, D., Schmid, H., Drechsler, U., Wolf, H., Wolf, M., Michel, B., ... & Delamarche, E. (2002). Autonomous microfluidic capillary system. Analytical chemistry, 74(24), 6139-6144.

    Google Scholar 

  • K. Sugioka, Y. Cheng, K. Midorikawa, Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture, 2005, Appl Physics A 81:1–10.

    Google Scholar 

  • Khoshmanesh, K., Tang, S. Y., Zhu, J. Y., Schaefer, S., Mitchell, A., Kalantar-Zadeh, K., & Dickey, M. D. (2017). Liquid metal enabled microfluidics. Lab on a Chip, 17(6), 974-993.

    Google Scholar 

  • Kloxin, C. J., & Bowman, C. N. (2013). Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chemical Society Reviews, 42(17), 7161-7173.

    Google Scholar 

  • Kolodziej, C.M.; Maynard, H.D. Electron-beam lithography for patterning biomolecules at the micron and nanometer scale. Chem. Mater. 2012, 24, 774–780.

    Google Scholar 

  • Kuswandi, B., Huskens, J., & Verboom, W. (2007). Optical sensing systems for microfluidic devices: a review. Analytica chimica acta, 601(2), 141-155.

    Google Scholar 

  • Lam, P., Wynne, K. J., & Wnek, G. E. (2002). Surface-tension-confined microfluidics. Langmuir, 18(3), 948-951.

    Google Scholar 

  • Lewpiriyawong, N., Yang, C., & Lam, Y. C. (2008). Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics, 2(3), 034105.

    Google Scholar 

  • Li, J. M., Liu, C., Qiao, H. C., Zhu, L. Y., Chen, G., & Dai, X. D. (2007). Hot embossing/bonding of a poly (ethylene terephthalate)(PET) microfluidic chip. Journal of Micromechanics and Microengineering, 18(1), 015008.

    Google Scholar 

  • Li, J., Ha, N. S., & van Dam, R. M. (2019). Ionic-surfactant-mediated electro-dewetting for digital microfluidics. Nature, 572(7770), 507-510.

    Google Scholar 

  • Li, X., Ballerini, D. R., & Shen, W. (2012). A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 6(1), 011301.

    Google Scholar 

  • Lin, C. H., Lee, G. B., Lin, Y. H., & Chang, G. L. (2001). A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. Journal of Micromechanics and Microengineering, 11(6), 726.

    Google Scholar 

  • Liu, K., & Fan, Z. H. (2011). Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst, 136(7), 1288-1297.

    Google Scholar 

  • Luo, J., & Eitel, R. (2018). Aqueous tape casting of Al2O3 for multilayer co-fired ceramic based microfluidic chips with translucent windows. Ceramics International, 44(3), 3488-3491.

    Google Scholar 

  • M. A. Roberts, J. S. Rossier, P. Bercier, H. Girault, UV laser machined polymer substrates for the development of microdiagnostic systems, 1997, Anal Chem 69:2035–2042.

    Google Scholar 

  • Mair, D. A., Geiger, E., Pisano, A. P., Fréchet, J. M., & Svec, F. (2006). Injection molded microfluidic chips featuring integrated interconnects. Lab on a Chip, 6(10), 1346-1354.

    Google Scholar 

  • Mandt, D., Gruber, P., Markovic, M., Tromayer, M., Rothbauer, M., Krayz, S. R. A., ... & Dubruel, P. (2018). Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. International Journal of Bioprinting, 4(2).

    Google Scholar 

  • Martinez-Duarte, R., & Madou, M. (2011). SU-8 photolithography and its impact on microfluidics. Microfluidics and Nanofluidics Handbook, (2006), 231-268.

    Google Scholar 

  • Marty, F., Rousseau, L., Saadany, B., Mercier, B., Français, O., Mita, Y., & Bourouina, T. (2005). Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures. Microelectronics journal, 36(7), 673-677.

    Google Scholar 

  • Mathur, A., Roy, S. S., Tweedie, M., Mukhopadhyay, S., Mitra, S. K., & McLaughlin, J. A. (2009). Characterization of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Current Applied Physics, 9(6), 1199-1202.

    Google Scholar 

  • Mazzeo, A. D., & Hardt, D. E. (2013). Centrifugal casting of microfluidic components with PDMS. Journal of Micro and Nano-Manufacturing, 1(2).

    Google Scholar 

  • Mohamed, M. G., Kumar, H., Wang, Z., Martin, N., Mills, B., & Kim, K. (2019). Rapid and inexpensive fabrication of multi-depth microfluidic device using high-resolution LCD stereolithographic 3D printing. Journal of Manufacturing and Materials Processing, 3(1), 26.

    Google Scholar 

  • Mou, L., & Jiang, X. (2017). Materials for microfluidic immunoassays: a review. Advanced healthcare materials, 6(15), 1601403.

    Google Scholar 

  • Nge, P. N., Rogers, C. I., & Woolley, A. T. (2013). Advances in microfluidic materials, functions, integration, and applications. Chemical reviews, 113(4), 2550-2583.

    Google Scholar 

  • Nielsen, A. V., Beauchamp, M. J., Nordin, G. P., & Woolley, A. T. (2019). 3D Printed Microfluidics. Annual Review of Analytical Chemistry, 13.

    Google Scholar 

  • Ohno, K. I., Tachikawa, K., & Manz, A. (2008). Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis, 29(22), 4443-4453.

    Google Scholar 

  • Ong, S. E., Zhang, S., Du, H., & Fu, Y. (2008). Fundamental principles and applications of microfluidic systems. Front Biosci, 13(7), 2757-2773.

    Google Scholar 

  • Ono, Y., Jen, C. K., Cheng, C. C., & Kobayashi, M. (2005). Real-time monitoring of injection molding for microfluidic devices using ultrasound. Polymer Engineering & Science, 45(4), 606-612.

    Google Scholar 

  • Qin, D., Xia, Y., & Whitesides, G. M. (2010). Soft lithography for micro-and nanoscale patterning. Nature protocols, 5(3), 491-502.

    Google Scholar 

  • Rahbar, M., Chhina, S., Sameoto, D., & Parameswaran, M. (2009). Microwave-induced, thermally assisted solvent bonding for low-cost PMMA microfluidic devices. Journal of Micromechanics and Microengineering, 20(1), 015026.

    Google Scholar 

  • Raj M, K, & Chakraborty, S. (2020). PDMS microfluidics: A mini review. Journal of Applied Polymer Science, 137(27), 48958.

    Google Scholar 

  • Randall, G. C., & Doyle, P. S. (2005). Permeation-driven flow in poly (dimethylsiloxane) microfluidic devices. Proceedings of the National Academy of Sciences, 102(31), 10813-10818.

    Google Scholar 

  • Ren, K., Zhou, J., & Wu, H. (2013). Materials for microfluidic chip fabrication. Accounts of chemical research, 46(11), 2396-2406.

    Google Scholar 

  • Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M., & Yanik, M. F. (2007). Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proceedings of the National Academy of Sciences, 104(35), 13891-13895.

    Google Scholar 

  • Romoli, L., Tantussi, G., & Dini, G. (2011). Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices. Optics and Lasers in Engineering, 49(3), 419-427.

    Google Scholar 

  • Russo, A. P., Retterer, S. T., Spence, A. J., Isaacson, M. S., Lepak, L. A., Spencer, M. G., ... & Turner, J. N. (2004). Direct casting of polymer membranes into microfluidic devices. Separation science and technology, 39(11), 2515-2530.

    Google Scholar 

  • S. C. Wang, C. Y. Lee, H. P. Chen, Thermoplastic microchannel fabrication using carbon dioxide laser ablation, 2005, J Chromatogr A 1111(2):252–257.

    Google Scholar 

  • Saharil, F., Forsberg, F., Liu, Y., Bettotti, P., Kumar, N., Niklaus, F., ... & Gylfason, K. B. (2013). Dry adhesive bonding of nanoporous inorganic membranes to microfluidic devices using the OSTE (+) dual-cure polymer. Journal of Micromechanics and Microengineering, 23(2), 025021.

    Google Scholar 

  • Samiei, E., Tabrizian, M., & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip, 16(13), 2376-2396.

    Google Scholar 

  • Sandström, N., Shafagh, R. Z., Vastesson, A., Carlborg, C. F., van der Wijngaart, W., & Haraldsson, T. (2015). Reaction injection molding and direct covalent bonding of OSTE+ polymer microfluidic devices. Journal of Micromechanics and Microengineering, 25(7), 075002.

    Google Scholar 

  • Schrott, W., Svoboda, M., Slouka, Z., Přibyl, M., & Šnita, D. (2010). PDMS microfluidic chips prepared by a novel casting and pre-polymerization method. Microelectronic engineering, 87(5-8), 1600-1602.

    Google Scholar 

  • Shang, L., Cheng, Y., & Zhao, Y. (2017). Emerging droplet microfluidics. Chemical reviews, 117(12), 7964-8040.

    Google Scholar 

  • Sivakumar, R., & Lee, N. Y. (2020). Microfluidic device fabrication mediated by surface chemical bonding. Analyst, 145(12), 4096-4110.

    Google Scholar 

  • Spierings, G. A. C. M. (1993). Wet chemical etching of silicate glasses in hydrofluoric acid based solutions. Journal of Materials science, 28(23), 6261-6273.

    Google Scholar 

  • Spille, E., & Feder, R. (1977). X-ray lithography. In X-ray Optics (pp. 35-92). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Squires, T. M., & Quake, S. R. (2005a). Microfluidics: Fluid physics at the nanoliter scale. Reviews of modern physics, 77(3), 977.

    Google Scholar 

  • Squires, T. M., & Quake, S. R. (2005b). Microfluidics: Fluid physics at the nanoliter scale. Reviews of modern physics, 77(3), 977.

    Google Scholar 

  • Stjernström, M., & Roeraade, J. (1998a). Method for fabrication of microfluidic systems in glass. Journal of Micromechanics and Microengineering, 8(1), 33.

    Google Scholar 

  • Stjernström, M., & Roeraade, J. (1998b). Method for fabrication of microfluidic systems in glass. Journal of Micromechanics and Microengineering, 8(1), 33.

    Google Scholar 

  • Studer, V., Pepin, A., Chen, Y., & Ajdari, A. (2002). Fabrication of microfluidic devices for AC electrokinetic fluid pumping. Microelectronic Engineering, 61, 915-920.

    Google Scholar 

  • Stulen, R.H.; Sweeney, D.W. Extreme ultraviolet lithography. IEEE J. Quantum Electron. 1999, 35, 694–699.

    Google Scholar 

  • Sun, M., Xie, Y., Zhu, J., Li, J., & Eijkel, J. C. (2017). Improving the resolution of 3D-Printed molds for microfluidics by iterative casting-shrinkage cycles. Analytical chemistry, 89(4), 2227-2231.

    Google Scholar 

  • T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, C. B. Schaffer, Femtosecond laser-drilled capillary integrated into a microfluidic device, 2005, Appl Phys Lett 86:201106-1–201106-3.

    Google Scholar 

  • Tabeling, P. (2005). Introduction to microfluidics. OUP Oxford.

    Google Scholar 

  • Tanzi, S., Østergaard, P. F., Matteucci, M., Christiansen, T. L., Cech, J., Marie, R., & Taboryski, R. (2012). Fabrication of combined-scale nano-and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process. Journal of Micromechanics and Microengineering, 22(11), 115008.

    Google Scholar 

  • Thian, S. C. H., Fuh, J. Y. H., Wong, Y. S., Loh, H. T., Gian, P. W., & Tang, Y. (2008). Fabrication of microfluidic channel utilizing silicone rubber with vacuum casting. Microsystem technologies, 14(8), 1125-1135.

    Google Scholar 

  • Thompson, L. F. (1983). An introduction to lithography. ACS Symposium Series; American Chemical Society: Washington, DC,

    Google Scholar 

  • Thuo, M. M., Martinez, R. V., Lan, W. J., Liu, X., Barber, J., Atkinson, M. B., ... & Whitesides, G. M. (2014). Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chemistry of Materials, 26(14), 4230-4237.

    Google Scholar 

  • Tian WC., Finehout E. (2008) Introduction to Microfluidics. In: Microfluidics for Biological Applications. Springer, Boston, MA

    Google Scholar 

  • Tsao, C. W., & DeVoe, D. L. (2009). Bonding of thermoplastic polymer microfluidics. Microfluidics and nanofluidics, 6(1), 1-16.

    Google Scholar 

  • Vera, R. H., O’Callaghan, P., Fatsis-Kavalopoulos, N., & Kreuger, J. (2019). Modular microfluidic systems cast from 3D-printed molds for imaging leukocyte adherence to differentially treated endothelial cultures. Scientific reports, 9(1), 1-10.

    Google Scholar 

  • Verhulsel, M., Vignes, M., Descroix, S., Malaquin, L., Vignjevic, D. M., & Viovy, J. L. (2014). A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials, 35(6), 1816-1832.

    Google Scholar 

  • Vladimirsky Y (1999) Lithography, Editor(s): J.A.R. Samson, D.L. Ederer, Vacuum Ultraviolet Spectroscopy,Academic Press, Pages 205-223

    Google Scholar 

  • Walker, G. M., & Beebe, D. J. (2002). A passive pumping method for microfluidic devices. Lab on a Chip, 2(3), 131-134.

    Google Scholar 

  • Wang, H., Chen, L., & Sun, L. (2017). Digital microfluidics: A promising technique for biochemical applications. Frontiers of Mechanical Engineering, 12(4), 510-525.Geng, H., & Cho, S. K. (2017). Dielectrowetting for digital microfluidics: Principle and application. A critical review. Reviews of Adhesion and Adhesives, 5(3), 268-302.

    Google Scholar 

  • Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics, 6(2), 145-162.

    Google Scholar 

  • Wang, X., Liedert, C., Liedert, R., & Papautsky, I. (2016). A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Lab on a Chip, 16(10), 1821-1830..

    Google Scholar 

  • Weigl, B. H., Kriebel, J., Mayes, K. J., Bui, T., & Yager, P. (1999). Whole blood diagnostics in standard gravity and microgravity by use of microfluidic structures (T-sensors). Microchimica Acta, 131(1-2), 75-83.

    Google Scholar 

  • Wheeler, A. R., Throndset, W. R., Whelan, R. J., Leach, A. M., Zare, R. N., Liao, Y. H., ... & Daridon, A. (2003). Microfluidic device for single-cell analysis. Analytical chemistry, 75(14), 3581-3586.

    Google Scholar 

  • Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368-373.

    Google Scholar 

  • Wilson, C. F., Wallace, M. I., Morishima, K., Simpson, G. J., & Zare, R. N. (2002). Coupled electrorotation of polymer microspheres for microfluidic sensing and mixing. Analytical chemistry, 74(19), 5099-5104.

    Google Scholar 

  • Wu, D., Qin, J., & Lin, B. (2008). Electrophoretic separations on microfluidic chips. Journal of Chromatography A, 1184(1-2), 542-559.

    Google Scholar 

  • Wu, J., & Gu, M. (2011). Microfluidic sensing: state of the art fabrication and detection techniques. Journal of biomedical optics, 16(8), 080901.

    Google Scholar 

  • Xia, Y., & Whitesides, G. M. (1998). Soft lithography. Annual review of materials science, 28(1), 153-184.

    Google Scholar 

  • Y. Jiang, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y. Jiang, Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses, 2001, Opt Lett 26(23):1912–1914.

    Google Scholar 

  • Y. Liu, C. B. Rauch, R. L. Stevens, R. Lenigk, J. Yang, D. B. Rhine, P. Grozinski, DNA amplification and hybridization assays in integrated plastic monolithic devices, 2002, Anal Chem 74:3063–3070.

    Google Scholar 

  • Yang, C. G., Xu, Z. R., & Wang, J. H. (2010). Manipulation of droplets in microfluidic systems. TrAC Trends in Analytical Chemistry, 29(2), 141-157.

    Google Scholar 

  • Yeo, L. P., Ng, S. H., Wang, Z., Wang, Z., & de Rooij, N. F. (2009). Micro-fabrication of polymeric devices using hot roller embossing. Microelectronic engineering, 86(4-6), 933-936.

    Google Scholar 

  • Yussuf, A. A., Sbarski, I., Hayes, J. P., Solomon, M., & Tran, N. (2005). Microwave welding of polymeric-microfluidic devices. Journal of Micromechanics and Microengineering, 15(9), 1692.

    Google Scholar 

  • Zhang, N., Liu, J., Zhang, H., Kent, N. J., Diamond, D., & D Gilchrist, M. (2019). 3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices. Micromachines, 10(9), 595.

    Google Scholar 

  • Zhang, Y., & Nguyen, N. T. (2017). Magnetic digital microfluidics–a review. Lab on a Chip, 17(6), 994-1008.

    Google Scholar 

  • Zhou, J., Ellis, A. V., & Voelcker, N. H. (2010a). Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 31(1), 2-16.

    Google Scholar 

  • Zhou, J., Ellis, A. V., & Voelcker, N. H. (2010b). Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 31(1), 2-16.

    Google Scholar 

  • Zhu, P., & Wang, L. (2017). Passive and active droplet generation with microfluidics: a review. Lab on a Chip, 17(1), 34-75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yata, V.K. (2021). Principles, Materials, and Fabrication Methods of Microfluidics. In: Microfluidics for Assisted Reproduction in Animals. Springer, Singapore. https://doi.org/10.1007/978-981-33-4876-9_2

Download citation

Publish with us

Policies and ethics