Skip to main content

Abstract

Microfluidics enabled a wide variety of disciplines with its applications by implying mechanical, optical, chemical, and electrical and bio-interfacial principles. Recent advances in micro- and nanofabrication make possible to implicate the microfluidics in chemical assays, electronic systems, diagnostics approaches, single-cell analysis, and pharmaceutics. Portability, low sample or reagent volumes, biocompatibility, tissue engineering are some of the advantages that attracted the biologists to imply the microfluidics for biological applications.

Sustainability cannot be achieved with natural reproductive methods in livestock production. Demand driven livestock growth necessitated the research towards the assisted reproductive technology (ART) for multiplication of animals at a much faster pace. Existing ART methods need to be improved with the help of interdisciplinary approaches. Miniaturized devices attracted the reproductive biologists due to their ease in handling of single cells and small sample volumes. Use of microfluidics in animal reproduction may revolutionize the assisted reproductive techniques in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrberg, C. D., Manz, A., & Chung, B. G. (2016). Polymerase chain reaction in microfluidic devices. Lab on a Chip, 16(20), 3866-3884.

    Google Scholar 

  • Andrus, J. and Bond, W. L. (1958)"Photoengraving in Transistor Fabrication," in F. J. Biondi et al, eds., Transistor Technology, Vol. III (Princeton, NJ: D. Van Nostrand,) pp. 151-162.

    Google Scholar 

  • Ballerini, D. R., Li, X., & Shen, W. (2011). Flow control concepts for thread-based microfluidic devices. Biomicrofluidics, 5(1), 014105.Shi, H., Nie, K., Dong, B., Long, M., Xu, H., & Liu, Z. (2019). Recent progress of microfluidic reactors for biomedical applications. Chemical Engineering Journal, 361, 635-650.

    Google Scholar 

  • Bassous,E., Taub,H.H., & Kuhn,L.(1977). Ink jet printing nozzle arrays etched in silicon. Applied Physics Letters,31,135–137

    Google Scholar 

  • Bohr, A., Colombo, S., & Jensen, H. (2019). Future of Microfluidics in Research and in the Market. In Microfluidics for Pharmaceutical Applications (pp. 425-465). William Andrew Publishing.

    Google Scholar 

  • Chakravarthi, P. V., & Sri Balaji, N. (2010). Use of assisted reproductive technologies for livestock development. Veterinary World, 3(5).

    Google Scholar 

  • Chen,P.L., Muller,R.S., &Andrews,A.P.(1984).Integrated silicon PI-FET accelerometer with proof mass. Sensors and Actuators, 5,119–126.

    Google Scholar 

  • De Geyter, C. (2019). Assisted reproductive technology: impact on society and need for surveillance. Best Practice & Research Clinical Endocrinology & Metabolism, 33(1), 3-8.

    Google Scholar 

  • DeanJr, R. N., & Luque, A. (2009). Applications of microelectromechanical systems in industrial processes and services. IEEE Transactions on Industrial Electronics, 56(4), 913-925.

    Google Scholar 

  • Duffy,D.C., McDonald,J.C., Schueller,O.J.A., &Whitesides,G.M. (1998).Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem., 70, 4974–4984.

    Google Scholar 

  • Evans, G. (1991). Application of reproductive technology to the Australian livestock industries. Reproduction, Fertility and development, 3(6), 627-650.

    Google Scholar 

  • Gajda, B., & SmorÄ…g, Z. (2009). Oocyte and embryo cryopreservation–state of art and recent developments in domestic animals. Journal of Animal and Feed Sciences, 18(3), 371-387.

    Google Scholar 

  • Gauthier, R. C., Tait, R. N., & Ubriaco, M. (2002). Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications. Applied optics, 41(12), 2361-2367.

    Google Scholar 

  • Henkel, R. (2012). Sperm preparation: state-of-the-art—physiological aspects and application of advanced sperm preparation methods. Asian journal of andrology, 14(2), 260.

    Google Scholar 

  • Henkel, R. R., & Schill, W. B. (2003). Sperm preparation for ART. Reproductive biology and endocrinology, 1(1), 108.

    Google Scholar 

  • Hiemstra, S. J., van der Lende, T., & Woelders, H. (2006). The potential of cryopreservation and reproductive technologies for animal genetic resources conservation strategies. The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, 45-59.

    Google Scholar 

  • Hou, X., Zhang, Y. S., Trujillo-de Santiago, G., Alvarez, M. M., Ribas, J., Jonas, S. J., ... & Khademhosseini, A. (2017). Interplay between materials and microfluidics. Nature Reviews Materials, 2(5), 1-15.

    Google Scholar 

  • Johnson, L. A. (2000). Sexing mammalian sperm for production of offspring: the state-of-the-art. Animal reproduction science, 60, 93-107.

    Google Scholar 

  • Johnson, L. A., Welch, G. R., & Rens, W. (1999). The Beltsville sperm sexing technology: high-speed sperm sorting gives improved sperm output for in vitro fertilization and AI. Journal of Animal Science, 77(suppl_2), 213-220.

    Google Scholar 

  • Kang, L., Chung, B. G., Langer, R., & Khademhosseini, A. (2008). Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug discovery today, 13(1-2), 1-13.

    Google Scholar 

  • Lasley, B. L., Loskutoff, N. M., & Anderson, G. B. (1994). The limitation of conventional breeding programs and the need and promise of assisted reproduction in nondomestic species. Theriogenology, 41(1), 119-132.

    Google Scholar 

  • Livak-Dahl, E., Sinn, I., & Burns, M. (2011). Microfluidic chemical analysis systems. Annual Review of Chemical and Biomolecular Engineering 2011 2:1, 325-353

    Google Scholar 

  • Losey, M. W., Jackman, R. J., Firebaugh, S. L., Schmidt, M. A., & Jensen, K. F. (2002). Design and fabrication of microfluidic devices for multiphase mixing and reaction. Journal of Microelectromechanical Systems, 11(6), 709-717.

    Google Scholar 

  • Mandawala, A. A., Harvey, S. C., Roy, T. K., & Fowler, K. E. (2016). Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology, 86(7), 1637-1644.

    Google Scholar 

  • Manz,A.,Graber,N., &Widmer,H.M. (1990). Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors actuators B Chem., 1, pp. 244–248

    Article  CAS  Google Scholar 

  • Maxwell, W. M. C., Evans, G., Hollinshead, F. K., Bathgate, R., De Graaf, S. P., Eriksson, B. M., ... & O’Brien, J. K. (2004). Integration of sperm sexing technology into the ART toolbox. Animal Reproduction Science, 82, 79-95.

    Google Scholar 

  • Nasseri, B., Soleimani, N., Rabiee, N., Kalbasi, A., Karimi, M., & Hamblin, M. R. (2018). Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 117, 112-128.

    Google Scholar 

  • Nawroth, F., Rahimi, G., Isachenko, E., Isachenko, V., Liebermann, M., Tucker, M. J., & Liebermann, J. (2005, November). Cryopreservation in assisted reproductive technology: new trends. In Seminars in reproductive medicine (Vol. 23, No. 04, pp. 325-335). Copyright© 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

    Google Scholar 

  • O’Regan, G. (2016). The Invention of the Integrated Circuit and the Birth of Silicon Valley. In Introduction to the History of Computing (pp. 93-100). Springer, Cham.

    Google Scholar 

  • Paasch, U., Grunewald, S., & Glander, H. (2007). Sperm selection in assisted reproductive techniques. Society of Reproduction and Fertility supplement, 65, 515.

    Google Scholar 

  • Paegel, B. M., Blazej, R. G., & Mathies, R. A. (2003). Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis. Current opinion in biotechnology, 14(1), 42-50.

    Google Scholar 

  • Pegg, D. E. (2007). Principles of cryopreservation. In Cryopreservation and freeze-drying protocols (pp. 39-57). Humana Press.

    Google Scholar 

  • Petersen,K.E., Shartel,A., & Raley,N.F.(1982).Micromechanical accelerometer integrated with MOS de-tection circuitry. IEEE Transactions on Electron Devices, 29, 23–27.

    Google Scholar 

  • Pihl, J., Karlsson, M., & Chiu, D. T. (2005). Microfluidic technologies in drug discovery. Drug Discovery Today, 10(20), 1377-1383.

    Google Scholar 

  • Rodriguez-Martinez, H. (2012). Assisted reproductive techniques for cattle breeding in developing countries: a critical appraisal of their value and limitations. Reproduction in domestic animals, 47, 21-26.

    Google Scholar 

  • Roper, M. G., Easley, C. J., & Landers, J. P. (2005). Advances in polymerase chain reaction on microfluidic chips. Analytical chemistry, 77(12), 3887-3894.

    Google Scholar 

  • Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507(7491), 181-189.

    Google Scholar 

  • Sinclair, K. D. (2008). Assisted reproductive technologies and pregnancy outcomes: mechanistic insights from animal studies. In Seminars in reproductive medicine (Vol. 26, No. 02, pp. 153-161). © Thieme Medical Publishers.

    Google Scholar 

  • Singh, B., Mal, G., & Singla, S. K. (2017). Vitrification: A Reliable Method for Cryopreservation of Animal Embryos. In Cryopreservation of Mammalian Gametes and Embryos (pp. 243-249). Humana Press, New York, NY.

    Google Scholar 

  • Solti, L., Crichton, E. G., Loskutoff, N. M., & Cseh, S. (2000). Economical and ecological importance of indigenous livestock and the application of assisted reproduction to their preservation. Theriogenology, 53(1), 149-162.

    Google Scholar 

  • Tarozzi, N., Nadalini, M., & Borini, A. (2019). Effect on sperm DNA quality following sperm selection for ART: new insights. In Genetic Damage in Human Spermatozoa (pp. 169-187). Springer, Cham.

    Google Scholar 

  • Terry,S.C., Jerman,J.H., & Angell, J.B. (1979). A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices, 26,1880–1886.

    Google Scholar 

  • Tsunoda, Y., & Kato, Y. (2002). Recent progress and problems in animal cloning. Differentiation, 69(4-5), 158-161.

    Google Scholar 

  • Tuckerman,D.B., & Pease, R.F.W. (1981). High-Performance Heat Sinking for VLSI. IEEE Electron Device Letters, 5, 4.

    Google Scholar 

  • Vajta, G., & Kuwayama, M. (2006). Improving cryopreservation systems. Theriogenology, 65(1), 236-244.

    Google Scholar 

  • Velazquez, M. A. (2008) Assisted reproductive technologies in cattle: applications in livestock production, biomedical research and conservation biology. Annual Review of Biomedical Sciences, 10.

    Google Scholar 

  • Verma, O. P., Kumar, R., Kumar, A., & Chand, S. (2012). Assisted Reproductive Techniques in Farm Animal-From Artificial Insemination to Nanobiotechnology. Veterinary World, 5(5).

    Google Scholar 

  • Weibel, D. B., & Whitesides, G. M. (2006). Applications of microfluidics in chemical biology. Current opinion in chemical biology, 10(6), 584-591.

    Google Scholar 

  • Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368-373.

    Google Scholar 

  • Xia,Y., & Whitesides,G.M. (1998). Soft lithography. Angew. Chemie Int. Ed., 37, 550–575.

    Google Scholar 

  • Yang, Q., Zhang, N., Zhao, F., Zhao, W., Dai, S., Liu, J., ... & Sun, Y. (2015). Processing of semen by density gradient centrifugation selects spermatozoa with longer telomeres for assisted reproduction techniques. Reproductive BioMedicine Online, 31(1), 44-50.

    Google Scholar 

  • Yew, M., Ren, Y., Koh, K. S., Sun, C., & Snape, C. (2019). A Review of State-of-the-Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. Global challenges, 3(1), 1800060.

    Google Scholar 

  • Zhao, X. M., Xia, Y., & Whitesides, G. M. (1997). Soft lithographic methods for nano-fabrication. Journal of Materials Chemistry, 7(7), 1069-1074.

    Google Scholar 

  • Zegers-Hochschild, F., Adamson, G. D., de Mouzon, J., Ishihara, O., Mansour, R., Nygren, K., ... & Van der Poel, S. (2009). The international committee for monitoring assisted reproductive technology (ICMART) and the world health organization (WHO) revised glossary on ART terminology, 2009. Human reproduction, 24(11), 2683-2687.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yata, V.K. (2021). Introduction. In: Microfluidics for Assisted Reproduction in Animals. Springer, Singapore. https://doi.org/10.1007/978-981-33-4876-9_1

Download citation

Publish with us

Policies and ethics