Skip to main content

On Various Multiplicity-Free Products of Schur Functions

  • Conference paper
  • First Online:
Semigroups, Categories, and Partial Algebras (ICSAA 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 345))

Included in the following conference series:

  • 304 Accesses

Abstract

We focus on the most recent results on various products of Schur functions which are multiplicity-free in the sense that the coefficients which arise in the expansion of these products of Schur functions as a sum of Schur functions are 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bessenrodt, C., Bowman, C.: Multiplicity-free Kronecker products of characters of the symmetric groups. Adv. Math. 322, 473–529 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bessenrodt, C., Bowman, C., Paget, R.: The classification of multiplicity-free plethysms of Schur functions, pp. 1–27 (2020). arXiv:2001.08763v1

  3. Burgisser, P., Christandl, M., Ikenmeyer, C.: Even partitions in plethysms. J. Algebra 328, 322–329 (2011)

    Google Scholar 

  4. Burgisser, P., Ikenmeyer, C., Panova, G.: No occurrence obstructions in geometric complexity theory. J. Am. Math. Soc. 163–193 (2019)

    Google Scholar 

  5. Carbonara, J., Remmel, J.B., Yang, M.: Exact formulas for the plethysm \(s_{2}[s_{(1^{a}, b)}]\) and \(s_{1^{2}}[s_{(1^{a}, b)}]\). Technical report, MS I, 1–16 (1992)

    Google Scholar 

  6. Carbonara, J., Remmel, J.B., Yang, M.: A combinatorial rule for the Schur function expansion of the plethysm \(s_{(1^{a}, b)}[p_{k}]\). Linear and Multilinear Algebra 39, 341–373 (1995)

    Article  MathSciNet  Google Scholar 

  7. Carini, L.: On the multiplicity-free plethysms \(p_{2}[s_{\lambda }]\). Ann. Comb. 21, 339–352 (2017)

    Article  MathSciNet  Google Scholar 

  8. Carini, L., Remmel, J.B.: Formulas for the expansion of the plethysms \(s_{2}[s_{(a, b)}]\) and \(s_{2}[s_{n^{k}}]\). Discret. Math. 193, 147–177 (1998)

    Article  Google Scholar 

  9. Christandl, M., Harrow, A., Mitchison, G.: Nonzero Kronecker coefficients and what they tell us about spectra. Commun. Math. Phys. 270, 575–585 (2007)

    Article  MathSciNet  Google Scholar 

  10. Christandl, M., Mitchison, G.: The spectra of quantum states and the Kronecker coefficients of the symmetric group. Commun. Math. Phys. 261, 789–797 (2006)

    Google Scholar 

  11. Howe, R., Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond: The Schur lectures (1992). Israel Math. Conf. Proc. 8, 1–182 (1995)

    Google Scholar 

  12. Ikenmeyer, C., Panova, G.: Rectangular Kronecker coefficients and plethysms in geometric complexity theory. Adv. Math. 319, 40–66 (2017)

    Google Scholar 

  13. James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Addison-Wesley, London (1981)

    MATH  Google Scholar 

  14. Krattenthaler, C.: Identities for classical group characters of nearly rectangular shape. J. Algebra 209, 1–64 (1998)

    Article  MathSciNet  Google Scholar 

  15. Littlewood, D.E.: Invariant Theory, tensors, and group characters. Philos. Trans. R. Soc. Lond. Ser. A 239, 305-355 (1944)

    Google Scholar 

  16. Littlewood, D.E.: The Theory of Group Characters. Oxford University Press, Oxford (1950)

    MATH  Google Scholar 

  17. Littlewood, D.E., Richardson, A.: Group characters and algebra. Phil. Trans. A 233, 99–141 (1934)

    Google Scholar 

  18. Macdonald, I.G.: Symmetric functions and Hall polynomials, 2nd ed., Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York (2015). With contribution by A. V. Zelevinsky, and a foreword by Richard Stanley, Reprint of the 2008 paper back edition [MR1354144]

    Google Scholar 

  19. Mulmuley, K.: Geometric complexity theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry. Technical Report TR-2007-04, Computer Science Department, The University of Chicago (2007)

    Google Scholar 

  20. Murnaghan, F.: The analysis of the Kronecker product of irreducible representations of the symmetric group. Am. J. Math 60, 761–784 (1938)

    Article  MathSciNet  Google Scholar 

  21. Okada, S.: Applications of minor summation formulas to rectangular-shaped representations of classical groups. J. Algebra 205, 337–367 (1998)

    Article  MathSciNet  Google Scholar 

  22. Pak, I., Panova, G.: Bounds on certain classes of Kronecker and q-binomial coefficients. J. Comb. Theory Ser. A 147, 1–17 (2017)

    Google Scholar 

  23. Schilling, A., Warnaar, S.O.: Inhomogeneous lattice paths, generalized Kostka polynomials and \(A_{n-1}\) supernomials. Commun. Math. Phys. 202, 359–401 (1999)

    Article  MathSciNet  Google Scholar 

  24. Schur, I.: Uber eine klasse von Matrizen, die sch einer gegebenen Matrix zuordnen lassen, Ph.D. thesis, Berlin (1901)

    Google Scholar 

  25. Shimozono, M., White, D.E.: Color-to-spin ribbon Schensted algorithm. Discret. Math. 246, 295–316 (2002)

    Article  MathSciNet  Google Scholar 

  26. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  27. Stanley, R.P.: Positivity problems and conjectures in algebraic combinatorics. In : Mathematics: Frontiers and Perspectives, pp. 295–319. American Mathematical Society (2000)

    Google Scholar 

  28. Stembridge, J.: On multiplicity-free products of Schur functions. Ann. Comb. 5, 113–121 (2001)

    Article  MathSciNet  Google Scholar 

  29. Wybourne, B.G.: Symmetry Principles in Atomic Spectroscopy. Wiley, New York (1970)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the “National Group for Algebraic and Geometric Structures and their Applications” (GNSAGA-INDAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Carini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carini, L. (2021). On Various Multiplicity-Free Products of Schur Functions. In: Romeo, P.G., Volkov, M.V., Rajan, A.R. (eds) Semigroups, Categories, and Partial Algebras. ICSAA 2019. Springer Proceedings in Mathematics & Statistics, vol 345. Springer, Singapore. https://doi.org/10.1007/978-981-33-4842-4_10

Download citation

Publish with us

Policies and ethics