Skip to main content

Design and Fabrication of Flexible Antenna Using Foam Substrate for WiMAX Applications

  • Conference paper
  • First Online:
Micro-Electronics and Telecommunication Engineering

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 179))

Abstract

In present scenario, world interoperability for microwave access (WiMAX) is gaining great momentum among broadband wireless technologies. Employing flexible antenna will enable high-performance of radio frequency transmission as well as cost effective for such wireless applications. In this work, a flexible antenna is designed, simulated, and fabricated using foam substrate material for world interoperability for microwave access (WiMAX) band applications. The operating frequency is chosen as 3.5 GHz. The proposed antenna is bendable, wearable, low cost, and smaller in size, reduced reflection co-efficient, greater directivity, and wider bandwidth. The antenna is simulated using computer simulation technology software and is fabricated using vector network analyzer. The return loss value obtained in measurement is −24.95 dB which is in good agreement with simulated value of −34.6 dB. The gain and directivity obtained are 3.096 and 4.93 dBi, respectively. The radiation pattern obtained is omnidirectional. Thus, the designed antenna is compact enough with the dimensions of 50 × 36 × 2.2 mm3 to place inside any new technology wireless device. Since the directivity of the antenna under bending condition is 4.672 dBi, it can also be used for wearable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Huang H Flexiblewirelessantennasensor—areview.iEEESensJ 13(10):3865–3872 (2013). https://doi.org/10.1109/JSEN.2013.2242464

  2. Pandimadevi M, Tamilselvi R, Parisa Beham M Design issues of flexible antenna—a review. Int J Adv Trends Comput Sci Eng 1386–1394 (2019). https://doi.org/10.30534/ijatcse/2019/55842019

  3. Want R An introduction to RFID technology.IEEE Pervasive Comput 5(1):25–33 (2006). https://doi.org/10.1109/MPRV.2006

  4. Asnani V,Bauda S (2019) TriplebandmicrostrippatchantennausefulforWi-Fi andWiMAX. IETEJ Res. https://doi.org/10.1080/03772063.2019.1582365

  5. Desai A, Upadhyaya T, Patel J, Patel R, Palandoken M (2020) Flexible CPWfedtransparentantenna for WLAN and sub‐6 GHz 5G applications, vol 62, Issue 5, pp2090–2103

    Google Scholar 

  6. Sekkal S, Canale L, Asselman A (2020) Flexible textile antenna design with transparent conductive fabric integrated in OLED for WiMAX wireless communication systems. In: 2020IEEEinternationalconferenceonenvironmentandelectricalengineeringand2020 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe). Madrid, Spain, pp. 1–4. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160757

  7. Reis P, Virani HG(2020) Designofacompactmicrostrippatchantennaofflame resistant-4substrate forwirelessapplications. In:2020internationalconferenceonelectronicsandsustainable communication systems (ICESC).Coimbatore, India, pp 713–716. https://doi.org/10.1109/ICESC48915.2020.9156024

  8. Kumar Y, Gangwar RK, Kanaujia BK (2020) Characterization of CP radiations in a planar monopole antenna using tuning fork fractal slot for LTE band13/Wi-Max and Wi-Fiapplications. In: IEEEAccess, vol 8, pp127123–127133.https://doi.org/10.1109/ACCESS.2020.3008285

  9. Nouri L, Yahya S, Rezaei A (2020) Design and fabrication of a low-loss microstrip low pass-bandpass diplexer for WiMAX applications. In: China communications, vol 17, no 6, pp 109–120. https://doi.org/10.23919/JCC.2020.06.009

  10. Bansal A, Gupta R (2018) A review on microstrip patch antenna and feeding techniques.IntJInfTechnol.https://doi.org/10.1007/s41870-018-0121-4

  11. Carver K,Mink J(1981) Microstripantennatechnology.IEEETransAntennas Propag 29(1):2–24. https://doi.org/10.1109/TAP.1981.1142523

  12. Legay H, Shafai L (1994) New stacked microstrip antenna with large bandwidth and high gain. In:IEE proceedings—microwaves, antennas and propagation, vol 141, no 3, pp 199–204. https://doi.org/10.1049/ip-map:19941041

  13. Mao CX, Zhou Y, Wu Y, Soewardiman H, Werner DH, Jur JS (2020) Low-profile strip-loaded textile antenna with enhanced bandwidth and isolation for full-duplex wearable applications. IEEE Trans Antennas Propag 68(9), 6527–6537. https://doi.org/10.1109/TAP.2020.2989862

  14. Dwivedi S, Rawat A, Yadav RN (2013)Design of U-shape microstrip patch antenna for WiMAX applications at 2.5 GHz. In:2013 tenth international conference on wireless and optical communications networks (WOCN). Bhopal, pp. 1–5. https://doi.org/10.1109/WOCN.2013.6616214

  15. Parashar K, Singh V (2014) Microstrip patch antenna for WiMAX/WLAN applications. Appl Phys Lett 1:34–37 (ISSN: 2349-1108)

    Google Scholar 

  16. Bah AO, Gucuyetkin G (2020) Design of microstrip patch antenna for wimax applications. Int J Electric Electron Data Commun 6(6). ISSN(p): 2320-2084, ISSN(e): 2321-2950

    Google Scholar 

  17. Baabdullah F, Affandi A, Dobaie AM (2016) Design microstrip patch antenna for WiMAX applications at 8.5 Ghz. Int Org Sci Res (IOSR) J Electric Electron Eng 11(3): 74–78. p-ISSN: 2320-3331, e-ISSN: 2278-1676, Version IV

    Google Scholar 

  18. Prahlad RA, Prasanna KM, Jugale AA, Ahmed MA (2019)Microstrip patch slot antenna design for WiMAX and WLAN applications. In: ICOEI-third international conference on trends in electronics and informatics. Tirunelveli, India, pp 810–814. https://doi.org/10.1109/ICOEI.2019.8862578

  19. Osklang P, Charoenpanich CP, Akkaraekthalin P (2019) Triband compactprintedantennafor2.4/3.5/5 GHzWLAN/WiMAXapplications.Int J Antennas Propag Article ID 8094908. https://doi.org/10.1155/2019/8094908

  20. Dey AB,Talukdar B,Debnath S, Arif WDesignofflexibleanddualwideband antenna for compact wireless devices. In: 2019 IEEE international conference on advanced networks and telecommunications systems (ANTS). GOA, India, pp 1–6. https://doi.org/10.1109/ANTS47819.2019.9118120

  21. Gupta N, Singh VK, Ali Z, Ahirwar J (2016) Stacked textile antenna for multi band application using foam substrate. In: CMS-2016 international conference on computationalmodelingandsecurity,Elsevier,ProcediaComputer Science85:871–877

    Google Scholar 

  22. Pauria IB, Kumar S, Sharma S (2012) Design and simulation of E-shape microstrip patch antenna for wideband applications. Int J Soft Microstrip Patch Antenna Wideband Appl; Int J Soft Comput Eng (IJSCE) 3(2). ISSN: 2231-2307

    Google Scholar 

  23. Saeed SM, Balanis CA, Birtcher CR (2016) Inkjet-printed flexible reconfigurable antenna for conformal WLAN/WiMAX wireless devices. IEEE Antennas Wirel Propag Lett 15:1979–1982. https://doi.org/10.1109/lawp.2016.2547338

  24. CST homepage,https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

  25. Balanis CA (2016) Antenna theory: analysis and design, 4th edn. Wiley publications. ISBN: 978-1-118-64206-1

    Google Scholar 

  26. Key sighthomepage, https://literature.cdn.keysight.com/litweb/pdf/5968-5260E.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pandimadevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandimadevi, M., Tamilselvi, R. (2021). Design and Fabrication of Flexible Antenna Using Foam Substrate for WiMAX Applications. In: Sharma, D.K., Son, L.H., Sharma, R., Cengiz, K. (eds) Micro-Electronics and Telecommunication Engineering. Lecture Notes in Networks and Systems, vol 179. Springer, Singapore. https://doi.org/10.1007/978-981-33-4687-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4687-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4686-4

  • Online ISBN: 978-981-33-4687-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics