Skip to main content

Fiber Optic Communication Networks

  • Chapter
  • First Online:
Fiber Optic Communications

Abstract

Various types of optical fiber networks have been conceived, designed, and built to satisfy a wide range of transmission capacities and speeds. The link lengths between users can vary from short localized connections within a building or a campus environment to networks that span continents and run across oceans. This chapter defines basic terminology and general network concepts, illustrates different fiber optic network architectures, discusses the concept of network layering, defines data packet switching elements, describes how these elements route signals along wavelength channels, and shows how network configuration flexibility can offer connection protection in case there are link or node failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 26 July 2021

    The updated versions of these chapters can be found at.

References

  1. B.A. Forouzan, Data Communications and Networking, 5th edn. (McGraw-Hill, New York, 2013)

    Google Scholar 

  2. The Fiber Optic Association, The FOA Reference for Fiber Optics, www.thefoa.org/tech/ref/OSP/jargon.html. Accessed June 2020

  3. T. Anttalainen, V. Jaaskelainen, Introduction to Communication Networks (Artech House, 2015)

    Google Scholar 

  4. ITU-T Rec. X.210, Open Systems Interconnection Layer Service Definition Conventions (Nov. 1993)

    Google Scholar 

  5. R. Ramaswami, K.N. Sivarajan, G. Susaki, Optical Networks, 3rd edn. (Morgan Kaufmann, Burlington, 2009)

    Google Scholar 

  6. L. Peterson, B. Davie, Computer Networks, 5th edn. (Morgan Kauffman, Burlington, 2012)

    Google Scholar 

  7. M. Nurujjaman, S. Sebbah, C.M. Assi, M. Maier, Optimal capacity provisioning for survivable next generation Ethernet transport networks. J. Opt. Commun. Netw. 4(12), 967–977 (2012)

    Article  Google Scholar 

  8. C.S. Ou, B. Mukherjee, Survivable Optical WDM Networks (Springer, Berlin, 2005)

    Google Scholar 

  9. R.K. Jain, Principles of Synchronous Digital Hierarchy (CRC Press, Boca Raton, 2013)

    Google Scholar 

  10. H. van Helvoort, The ComSoc Guide to Next Generation Optical Transport: SDH/SONET/OTN (Wiley-IEEE Press, Hoboken, 2010)

    Google Scholar 

  11. Alliance for Telecommunications Industry Solutions (ATIS), Synchronous Optical Network (SONET)—Basic Description Including Multiplex Structure, Rates, and Formats, 2015 edn. (April 2015)

    Google Scholar 

  12. ITU-T sample SDH recommendations: (a) G.692, Optical Interfaces for Multichannel Systems with Optical Amplifiers (Jan. 2007); (b) G.841, Types and Characteristics of SDH Network Protection Architectures (Oct. 1998); (c) G.957, Optical Interfaces for Equipments and Systems Relating to the Synchronous Digital Hierarchy (March 2006)

    Google Scholar 

  13. H.T. Mouftah, P.H. Ho, Optical Networks: Architecture and Survivability (Springer, Berlin, 2003)

    Google Scholar 

  14. H.G. Perros, Connection-Oriented Networks: SONET/SDH, ATM, MPLS and Optical Networks (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  15. M.J. Li, M.J. Soulliere, D.J. Tebben, L. Nederlof, M.D. Vaughn, R.E. Wagner, Transparent optical protection ring architectures and applications. J. Lightw. Technol. 23, 3388–3403 (2005)

    Article  ADS  Google Scholar 

  16. A. Scavennec, O. Leclerc, Toward high-speed 40-Gb/s transponders. Proc. IEEE 94(5), 986–996 (2006)

    Article  Google Scholar 

  17. O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, P. Tran, M. Salsi, S. Bigo, Overlaying 10 Gb/s legacy optical networks with 40 and 100 Gb/s coherent terminals. J. Lightw. Technol. 30(14), 2367–2375 (2012)

    Article  ADS  Google Scholar 

  18. R.J. Essiambre, R.W. Tkach, Capacity trends and limits of optical communication networks. Proc. IEEE 100, 1035–1055 (2012)

    Article  Google Scholar 

  19. P.J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A.H. Gnauck, D.A. Fishman, C.R. Doerr, S. Chandrasekhar, L.L. Buhl, T.J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, Y. Painchaud, 100-Gb/s DQPSK transmission: from laboratory experiments to field trials. J. Lightw. Technol. 26(20), 3388–3402 (2008)

    Article  ADS  Google Scholar 

  20. X. Zhou, L. Nelson, DSP for 400 Gb/s and beyond optical networks. J. Lightw. Technol. 32(16), 2716–2725 (2014)

    Article  ADS  Google Scholar 

  21. L. Mehedy, M. Bakaul, A. Nirmalathas, Single channel directly detected optical-OFDM towards higher spectral efficiency and simplicity in 100 Gb/s Ethernet and beyond. J. Opt. Commun. Netw. 3(5), 426–434 (2011)

    Article  Google Scholar 

  22. Y.-K. Huang et al., High-capacity fiber field trial using terabit/s all- optical OFDM superchannels with DP-QPSK and DP-8QAM/DP-QPSK modulation. J. Lightw. Technol. 31(4), 546–553 (2013)

    Article  ADS  Google Scholar 

  23. Y. Wang, X. Cao, Multi-granular optical switching: A classified overview for the past and future. IEEE Commun. Surveys & Tutor. 14(3), 698–713 (2012) (Third Quarter)

    Google Scholar 

  24. S.L. Woodward, M. Feuer, P. Palacharia, ROADM-node architectures for reconfigurable photonic networks. Chap. 15 in Optical Fiber Telecommunications Volume VIB, 6th edn. (Academic Press, Cambridge, 2013)

    Google Scholar 

  25. K.G. Vlachos, F.M. Ferreira, S.S. Sygletos, A reconfigurable OADM architecture for high-order regular and offset QAM based OFDM super-channels. J. Lightw. Technol. 37(16), 4008–4016 (2019)

    Article  ADS  Google Scholar 

  26. T.A. Strasser, J.L. Wagener, Wavelength-selective switches for ROADM applications. IEEE J. Sel. Topics Quantum Electron. 16(5), 1150–1157 (2010)

    Google Scholar 

  27. D.J.F. Barros, J.M. Kahn, J.P. Wilde, T.A. Zeid, Bandwidth-scalable long-haul transmission using synchronized colorless transceivers and efficient wavelength-selective switches. J. Lightw. Technol. 30(16), 2646–2660 (2012)

    Article  ADS  Google Scholar 

  28. F. Naruse, Y. Yamada, H. Hasegawa, K.-I. Sato, Evaluations of OXC hardware scale and network resource requirements of different optical path add/drop ratio restriction schemes. IEEE/OSA J. Opt. Commun. Netw. 4(11), B26–B34 (2012)

    Article  Google Scholar 

  29. J.L. Strand, Integrated route selection, transponder placement, wavelength assignment, and restoration in an advanced ROADM architecture. IEEE/OSA J. Opt. Commun. Netw. 4(3), 282–288 (2012)

    Article  Google Scholar 

  30. R.A. Barry, P. Humblet, Models of blocking probability in all-optical networks with and without wavelength conversion. IEEE J. Select Areas Commun. 14(5), 858–867 (1996)

    Article  Google Scholar 

  31. Z. Xu, Q. Jin, Z. Tu, & S. Gao, All-optical wavelength conversion for telecommunication mode-division multiplexing signals in integrated silicon waveguides. Appl. Opt. 57(18), 5036–5040 (2018)

    Google Scholar 

  32. E. Stassen, C. Kim, D. Kong, H. Hu, M. Galili, L.K. Oxenløwe, K. Yvind, M. Pu, Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAs-on-insulator microresonators. APL Photon. 4, 100804 (2019)

    Article  ADS  Google Scholar 

  33. B.C. Chatterjee, N. Sarma, P.P. Sahu, Priority based routing and wavelength assignment with traffic grooming for optical networks. IEEE/OSA J. Opt. Commun. Netw. 4(6), 480–489 (2012)

    Article  Google Scholar 

  34. N. Charbonneau, V.M. Vokkarane, A survey
of advance reservation routing and wavelength assignment in wavelength-routed WDM networks. IEEE Commun. Surv. Tutor. 14(4), 1037–1064 (Fourth Quarte 2012)

    Google Scholar 

  35. A.G. Rahbar, Review of dynamic impairment-aware routing and wavelength assignment techniques in all-optical wavelength-routed networks. IEEE Commun. Surv. Tutor. 14(4), 1065–1089 (Fourth Quarter 2012)

    Google Scholar 

  36. D.J. Blumenthal, B.E. Olsson, G. Rossi, T.E. Dimmick, L. Rau, M. Masanovic, O. Lavrova, R. Doshi, O. Jerphagnon, J.E. Bowers, V. Kaman, L.A. Coldren, J. Barton, All-optical label swapping networks and technologies. J. Lightw. Technol. 18(12), 2058–2075 (2000)

    Article  ADS  Google Scholar 

  37. A. Pattavina, Architectures and performance of optical packet switching nodes for IP networks. J. Lightw. Technol. 23(3), 1023–1032 (2005)

    Article  ADS  Google Scholar 

  38. T. Ismail, Optical packet switching architecture using wavelength optical crossbars. IEEE/OSA J. Opt. Commun. Netw. 7, 461–469 (2015)

    Article  Google Scholar 

  39. M. Wang, S. Li, E.W.M. Wong, M. Zukerman, Evaluating OBS by effective utilization. IEEE Commun. Lett. 17(3), 576–579 (2013)

    Article  Google Scholar 

  40. T. Venkatesh, C. Siva Ram Murthy, An Analytical Approach to Optical Burst Switched Networks (Springer, Berlin, 2010)

    Google Scholar 

  41. C. F. Li, Principles of All-Optical Switching (Wiley, Hoboken, 2013)

    Google Scholar 

  42. M. Jinno, Elastic optical networking: roles and benefits in beyond 100-Gb/s era. J. Lightw. Technol. 35(5), 1116–1124 (2017)

    Article  ADS  Google Scholar 

  43. Ujjwal, J. Thangaraj, Review and analysis of elastic optical network and sliceable bandwidth variable transponder architecture. Opt. Eng. 57, 110802 (2018)

    Google Scholar 

  44. V. López, L. Velasco, Elastic Optical Networks (Springer, Berlin, 2016)

    Google Scholar 

  45. D.M. Marom, P.D. Colbourne, A. D’Errico, N.K. Fontaine, Y. Ikuma, R. Proietti, L. Zong, J.M. Rivas-Moscoso, I. Tomkos, Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking. J. Opt. Commun. Netw. 9, 1–26 (2017)

    Article  Google Scholar 

  46. L. Yan, X.S. Yao, M.C. Hauer, A.E. Willner, Practical solutions to polarization-mode-dispersion emulation and compensation. J. Lightw. Technol. 24(11), 3992–4005 (2006)

    Article  ADS  Google Scholar 

  47. H. Bülow, F. Buchali, A. Klekamp, Electronic dispersion compensation. J. Lightw. Technol. 26(1), 158–167 (2008)

    Article  ADS  Google Scholar 

  48. A.B. Dar, R.K. Jha, Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation. Opt. Quantum Electron. 49, article 108 (2017)

    Google Scholar 

  49. C.H. Yeh, J.R. Chen, W.Y. You, W.P. Lin, C.W. Chow, Rayleigh backscattering noise alleviation in long-reach ring-based WDM access communication. IEEE Access 8, 105065–105070 (2020)

    Article  Google Scholar 

  50. C. Kachris, I. Tomkos, A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutor. 14(4), 1021–1036 (Fourth Quarter 2012)

    Google Scholar 

  51. C. Kachris, K. Bergman, I. Tomkos, Optical Interconnects for Future Data Center Networks (Springer, Berlin, 2013)

    Google Scholar 

  52. T. Segawa, Y. Muranaka, R. Takahashi, High-speed optical packet switching for photonic datacenter networks. NTT Tech. Review 14, 1–7 (2016)

    Google Scholar 

  53. D.J. Blumenthal, H. Ballani, R.O. Behunin, J.E. Bowers, P. Costa, D. Lenoski, P. Morton, S.B. Papp, P. T. Rakich, Frequency-stabilized links for coherent WDM fiber interconnects in the datacenter. J. Lightw. Technol. 38 (Apr. 2020)

    Google Scholar 

  54. G. Kanakis et al., High-speed VCSEL-based transceiver for 200 GbE short-reach intra-datacenter optical interconnects. Appl. Sci. 9 (2019)

    Google Scholar 

  55. C. Xie, L. Wang, L. Dou, M. Xia, S. Chen, H. Zhang, Z. Sun, J. Cheng, Open and disaggregated optical transport networks for data center interconnects. J. Opt. Commun. Netw. 12, C12–C22 (2020)

    Article  Google Scholar 

  56. G. Keiser, FTTX Concepts and Applications (Wiley, Hoboken, 2006)

    Google Scholar 

  57. C.F. Lam (ed.), Passive Optical Networks: Principles and Practice (Academic Press, Cambridge, 2007)

    Google Scholar 

  58. Y.C. Chung, Y. Takushima, Wavelength-division-multiplexed passive optical networks (WDM PONs), in Chap. 23 in Optical Fiber Tele-communications Volume VIB, 6th edn. (Academic Press, Cambridge, 2013)

    Google Scholar 

  59. H.S. Abbas, M.A. Gregory, The next generation of passive optical networks: a review. J. Netw. Comput. Appl. 67, 53–74 (2016)

    Article  Google Scholar 

  60. D.A. Khotimsky, NG-PON2 transmission convergence layer: a tutorial. J. Lightw. Technol. 34(5), 1424–1432 (1 March 2016)

    Google Scholar 

  61. D. Zhang, D. Liu, X. Wu, D. Nesset, Progress of ITU-T higher speed passive optical network (50G-PON) standardization: Review. J. Opt. Commun. Network. 12(10), D99–D108 (2020)

    Article  Google Scholar 

  62. ITU-T Recommendation G.983.1, Broadband Optical Access Systems Based on Passive Optical Network (PON) (Jan 2005)

    Google Scholar 

  63. ITU-T Recommendation G.984.1, Gigabit-capable passive optical network (GPON): General characteristics (Mar. 2008)

    Google Scholar 

  64. ITU-T Recommendation G.987, 10-Gigabit-Capable Passive Optical Network (XG-PON): Definitions, Abbreviations, and Acronyms (June 2012)

    Google Scholar 

  65. IEEE 802.3ca 25G/50G-EPON standard (June 2020)

    Google Scholar 

  66. C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, G. Keiser, Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks. Photonics Technol. Lett. 20(10), 794–796 (2008)

    Article  ADS  Google Scholar 

  67. S.-C. Lin, S.-L. Lee, H.-H. Lin, G. Keiser, R.J. Ram, Cross-seeding schemes for WDM-based next-generation optical access networks. J. Lightw. Technol. 29(24), 3727–3736 (2011)

    Article  ADS  Google Scholar 

  68. E. Wong, Next-generation broadband access networks and technologies. J. Lightw. Technol. 30(4), 597–608 (2012)

    Article  ADS  Google Scholar 

  69. F. Xiong, W.-D. Zhong, H. Kim, A broadcast-capable WDM passive optical network using offset polarization multiplexing. IEEE J. Lightw. Technol. 30(14), 2329–2336 (2012)

    Article  ADS  Google Scholar 

  70. L.B. Du, X. Zhao, S. Yin, T. Zhang, A.E.T. Barratt, J. Jiang, D. Wang, J. Geng, C. DeSanti, C.F. Lam, Long-reach wavelength-routed TWDM PON: Technology and deployment. J. Lightw. Technol. 37(3), 688–697 (1 Feb. 2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keiser, G. (2021). Fiber Optic Communication Networks. In: Fiber Optic Communications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4665-9_13

Download citation

Publish with us

Policies and ethics