Skip to main content

Plant Growth-Promoting Rhizobacteria (PGPR) and Compost Materials for AeroHydro Culture

  • Chapter
  • First Online:

Abstract

Recently, the development of science and technology for understanding the function and use of microbes in the field of agriculture is increasing rapidly. The ability of microbes to adapt and capture the signals of environmental conditions, followed by genetic changes and the function of cell metabolism can be used as a model in optimizing microbial utilization. The beneficial microbes living in the rhizosphere are usually grouped as plant growth-promoting rhizobacteria (PGPR) and degrading agents microbes of agricultural waste or commonly called decomposers. Both groups of microbes are very important to support plant growth, especially in unfavorable environmental conditions. PGPR are beneficial rhizobacteria that enhance plant growth as well as its productivity with various mechanisms. The interaction of PGPR with host plants is an intricate and interdependent relationship involving not only the two partners but other biotic and abiotic factors of the rhizosphere region. The ability of inoculated bacteria to survive, outcompete with the native microflora, and colonize in the rhizosphere is a critical step for a successful application, especially in extreme conditions. The concept of biological and biochemical processes that is mutually beneficial between bacteria and plants can be used to overcome the environmental problems that are not suitable for plant growth, and finally, plants can grow and produce yield optimally, for example, in the peatland ecosystem.

However, it has been difficult to inoculate PGPR and to maintain the root PGPR symbiotic system in field conditions, although sometimes it was a successful process in laboratory conditions. To avoid this inoculation deficit, an “Integrated PGPR Culture System” called AeroHydro Culture has been developed. In this chapter, the stabilization of PGPR function will focus on how to achieve supplying nutrients, oxygen, and beneficial substances based on “Land Surface Management” (AeroHydro Culture). The strategy to develop a liquid organic fertilizer containing selected multi-biocatalyst producing PGPR will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-el-Seoud I, Abdel-Megeed A (2012) Impact of rock materials and biofertilization on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  Google Scholar 

  • Agustiyani D, Dewi TK, Antonius S (2012) Production of starter, microbial maintenance, viability monitoring and microbial activity in liquid organic biofertilizers for quality assurance. Proc Sem Nat Biol 2012:416–424

    Google Scholar 

  • Agustiyani D, Laili N, Nditasari A, Antonius S (2015a) The effects of microbial of biocontrol agents and organic biofertilizers on the control of fusarium Oxysporum pathogenic fungus attacks f.sp. cubense (Foc) in Cavendish Banana plants CJ30 clones. Proseding Seminar Nasional Hasil Penelitian Bidang Pangan Nabati, Bioresources Untuk Pembangunan Ekonomi Hijau, Puslit Bioteknologi-LIPI

    Google Scholar 

  • Agustiyani D, Imamuddin H, Laili N, Dewi TK dan Antonius S (2015b) Effects of application of chemical and liquid organic organic fertilizer LOB StarTmik on growth and yield of sorghum. Proseding Seminar Nasional Hasil Penelitian Bidang Pangan Nabati, Bioresources Untuk Pembangunan Ekonomi Hijau, Puslit Bioteknologi-LIPI

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ–Sci 26:1–20

    Article  Google Scholar 

  • Albareda M, Dardanelli MS, Sousa C, Megias M, Temprano F, Navarro DNR (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett 259:67–73

    Article  CAS  Google Scholar 

  • Ali S (2013) Plant growth-promoting bacterial endophytes that contain ACC deaminase: isolation, characterization, and use. University of Waterloo Press, Waterloo

    Google Scholar 

  • Antonius S, Agustyani D (2011a) Impact of organic biofertilizer containing plant growth promoting rhizobacteria on water melon growth and yield, and soil biochemical properties under filed experiment in Malinau-North Kalimantan. Berk Penel Hayati 16:203–206

    Article  Google Scholar 

  • Antonius S, Agustyani D (2011b) Effects of biofertilizer containing microbial of P solubilizer and plant growth factor producer on cabbage (Brassica oleracea var. Capitata) growth and soil enzymatic activities: a green house trial. Berk Penel Hayati 16:149–153

    Article  Google Scholar 

  • Antonius S, Kustiarini DA, Saepudin E, Sulistiani TR (2007) Biodegradation of carbamate by soil microorganisms: isolation, biochemical properties and characterization of bacterial degrading carbaryl. In: Nugroho AP, Retnoaji B, Daryono BS, Maryani KD, Susandarini S, Marliana SM (eds) Proceeding of international seminar: contribution towards a better human prosperity. Faculty of Biology-UGM, Yogyakarta, pp 84–86

    Google Scholar 

  • Antonius S, Laili N, Imamuddin H, Agustiyani D (2012) Development of sustainable agriculture: the role of Beyonic-StarTmik LIPI biofertilizer on yield improvement of various crops and conservation of soil biochemical properties of various ecosystem in Indonesia. In: Abdulhadi R, Tjahjono BSE, Waluyo EB, Delinom RM, Prijono SN, Fizzanty T, Lesmana T (eds). Proceedings mobilizing science toward green economy, the 12th Sciences Council of Asia (SCA) conference and international symposium, 10–12 July, 2012, Bogor, p 119–126

    Google Scholar 

  • Antonius S, Rahmansyah M, Agustiyani D (2015a) Utilization of microbial inoculants as compost enrichment in vegetable farming. Berita Biologi 14:3

    Google Scholar 

  • Antonius S, Dewi TK, Osaki M (2015b) The synergy of biochar, compost and biofertilizer for development of sustainable agriculture. KnE Life Sci 2(1):677–681

    Article  Google Scholar 

  • Antonius S, Budi Satria R, Dewi TK (2016) The use of sprout as precursor for the production of indole acetic acid by selected plant growth promoting rhizobacteria grown in the fermentor. Microbiol Indonesia 10(4):131–138. https://doi.org/10.5454/mi.10.4.3

    Article  Google Scholar 

  • Antonius S, Syahputra RD, Nuraini Y, Dewi TK (2018) Benefits of biological organic fertilizer, compost and biochar on shallot growth and its effect on soil biochemistry in pot experiments using ultisol soil. J Biol Indonesia 14(2):243–250

    Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth-promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic Press, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Asaf S, Khan AL, Khan MA, Imran QM, Kang S-M, Al-Hosni K, Jeong EJ, Lee KE, Lee I-J (2017) Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other glycine species. PLoS One 12:e0182281

    Article  CAS  Google Scholar 

  • Bacon CW, Hinton DM (2007) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4538-7_5

    Chapter  Google Scholar 

  • Bagg A, Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51:509–518

    Article  CAS  Google Scholar 

  • Bairamov LE, Vinogradova LV, Zavalin AA (2001) Nitrogen nutrition and productivity of barley as conditioned by the application of associative diazotrophs. Asp Appl Biol 63:135–139

    Google Scholar 

  • Balota EL, Colozzi-Filho A, Andrede DS, Dick RP (2004) Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res 77:137–145

    Article  Google Scholar 

  • Barriuso J, Solano BR, Lucas JA, Lobo AP, Villaraco AG, Mañero FJG (2008) In: Ahmad I, Pichtel J, Hayat S (eds) Ecology, genetic diversity and screening strategies of plant growth promoting Rhizobacteria (PGPR). Wiley, Weinheim, pp 1–17

    Google Scholar 

  • Berg G, Zachow C, Müller H, Phillips J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656. https://doi.org/10.3390/agronomy3040648

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350. https://doi.org/10.1007/s11274-011-0979-9

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  Google Scholar 

  • Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschin IV, Copetta A, D’Agostino G, Massa N, Avidano L, Gamalero E, Berta G (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181–193. https://doi.org/10.1007/s00572-014-0599-y

    Article  CAS  Google Scholar 

  • Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, D’Agostino G, Gamalero E, Berta G (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1–11. https://doi.org/10.1007/s00572-016-0727-y

    Article  CAS  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339. https://doi.org/10.1023/A:1020218608266

    Article  CAS  Google Scholar 

  • Cheong YH, Chang HS, Xun Wang RG, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wound wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005a) Use of plant growth- promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol Res 71:1685–1693

    Article  CAS  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245. https://doi.org/10.1093/mp/sst028

    Article  CAS  Google Scholar 

  • Dick W, Cheng L, Wang P (2000) Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol Biochem 32:1915–1919

    Article  CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31(4):861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34(2):751–756

    Article  CAS  Google Scholar 

  • Etesami H, Hosseini HM, Alikhani HA, Mohammadi L (2014) Bacterial biosynthesis of 1-Aminocyclopropane-1-carboxylate (ACC) deaminase and Indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J Plant Growth Regul 33:654–670

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor BioI 190:63–68

    Article  CAS  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC, Tejada Moral M (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • Grover M, Ali SK, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. https://doi.org/10.1007/s11274-010-0572-7

    Article  Google Scholar 

  • Hallmann J (1997) Bacterial endophytes in agricultural crops bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agri BioI Sci 1(3):210–215

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  Google Scholar 

  • Hashidoko Y, Hayashi H, Hasegawa T, Purnomo E, Osaki M, Tahara S (2006) Frequent isolation of sphingomonads from local rice varieties and other weeds grown on acid sulfate soil in South Kalimantan, Indonesia. Tropics 15:391–395

    Article  Google Scholar 

  • Hendriyani E, Warseno T, Oktavia GAE (2019) Growth of slipper orchid Paphiopedilum javanicum (Reinw ex Lindl) Pfitzer during acclimatization stage. J Biodjati 4:2

    Google Scholar 

  • Ibijbijen J, Urquiage S, Ismaili M, Alves BJR, Boodey RM (1996) Effect of arbuscular mycorrhiza on uptake of nitrogen by Brachiaria arrecta and Sorghum vulgare from soil labelled for several years with 15N. New Phytol 133:487494

    Article  Google Scholar 

  • Khan AL, Lee I (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13:86. https://doi.org/10.1186/1471-2229-13-86

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi—current perspective. Arch Agron Soil Sci 56(1):73–98. https://doi.org/10.1080/03650340902806469

    Article  CAS  Google Scholar 

  • Klopper JW, Leon J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    Article  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross-talk in defense signaling. Plant Physiol 146:839–844

    Article  CAS  Google Scholar 

  • Kudoyarova GR, Arkhipova TN, Melent’ev AI (2015) Role of bacterial phytohormones in plant growth regulation and their development in bacterial metabolites in sustainable agroecosystem. In: Maheshwari DK (ed) Sustainable development and biodiversity, vol 12. Springer, Cham, pp 69–86. https://doi.org/10.1007/978-3-319-24654-3_4

    Chapter  Google Scholar 

  • Kumar S (2011) Composting of municipal solid waste. Crit Rev Biotechnol 31:112–136

    Article  CAS  Google Scholar 

  • Laili N, Antonius S, Kartika Y, Agustiyani D (2016) Pilot scale technology for production organic biofertilizer powder starter to support sustainable agriculture development. Proceedings of international conference on appropriate technology development (ICATDev)

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 63(1):541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    Article  CAS  Google Scholar 

  • Ma JF (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit Rev Plant Sci 24(4):267–281. https://doi.org/10.1080/07352680500196017

    Article  CAS  Google Scholar 

  • Machuca G, Pereira A, Aguiar AM, Milagres (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Article  CAS  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24(4):3315–3335. https://doi.org/10.1007/s11356-016-8104-0

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    Article  CAS  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    Article  CAS  Google Scholar 

  • Naz R, Rehim M, Zafar-ul-Hye M, Zahir ZA, Abid M, Ali MA, Hussain M (2013) Effectiveness of ACC-deaminase containing Pseudomonas strains to induce salinity tolerance in maize under fertilized and unfertilized field conditions. Soil Environ 32(2):167–172

    Google Scholar 

  • Niu G, Xu W, Rodriguez D, Sun Y (2012) Growth and physiological responses of maize and sorghum genotype to salt stress. Int Scholar Res Netw Agron 2012:12. https://doi.org/10.5402/2012/145072

    Article  Google Scholar 

  • Parmar KB, Mehta BP, Kunt MD (2016) Isolation, characterization and identification of potassium solubilizing bacteria from rhizosphere soil of maize (Zea mays). Int J Sci Environ Technol 5(5):3030–3037

    Google Scholar 

  • Pereira SIA, Monteiro C, Vega AL, Castro PML (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97. https://doi.org/10.1016/j.ecoleng.2015.11.033

    Article  Google Scholar 

  • Priadi N (2017) Seedling production of pak choy (Brassica rapa L.) using organic and inorganic nutrients. Bios 9:2

    Google Scholar 

  • Puppi G, Azcón R, Hӧflich G (1994) Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 201–216

    Chapter  Google Scholar 

  • Ramirez LEF, Mellado JC (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41., ISSN 0944-5013. https://doi.org/10.1016/j.micres.2015.11.007

    Article  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. https://doi.org/10.1007/s00253-009-2116-3

    Article  CAS  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang S-M et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243. https://doi.org/10.1016/j.plaphy.2016.05.006

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 38:887–894

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    Article  CAS  Google Scholar 

  • Shelobolina E, Roden E, Benzine J, Xiong MY (2014) Using phyllosilicate-Fe (ii)-oxidizing soil bacteria to improve Fe and K plant nutrition. Google patents

    Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium- bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. https://doi.org/10.1016/S0065-2113(10)05002-9

    Article  CAS  Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Srivastava CS (2008) Effect of high temperature on pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56(4):453–457

    Article  CAS  Google Scholar 

  • Sukamto LA, Lestari R, Putri WU (2014) The effect of bio-fertilizers on plant growth and growth rate of grafted avocado (Persea americana Mill.). Int J Adv Sci Eng Inf Technol 4(4):205–214. https://doi.org/10.18517/ijaseit.4.4.402

    Article  Google Scholar 

  • Timmusk S, Wagner GH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  CAS  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016a) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):1–17. https://doi.org/10.3390/molecules21050573

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016b) Role of plant growth promoting Rhizobacteria in agricultural sustainability—a review. Molecules 21(573):1–17

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  Google Scholar 

  • Wan L, Wang X, Cong C, Li J, Xu Y, Li X, Hou F, Wu Y, Wang L (2019) Effect of inoculating microorganisms in chicken manure composting with maize straw. Bioresour Technol 301:122730. https://doi.org/10.1016/j.biortech.2019.122730

    Article  CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585. https://doi.org/10.1111/j.1365-3040.1993.tb00906.x

    Article  CAS  Google Scholar 

  • Wu D, Wei Z, Qu F, Ahmed Mohamed T, Zhu L, Zhao Y, Jia L, Zhao R, Liu L, Li P (2020) Effect of Fenton pretreatment combined with bacteria inoculation on humic substances formation during lignocellulosic biomass composting derived from rice straw. Bioresour Technol 303:122849. https://doi.org/10.1016/j.biortech.2020.122849

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate Solubilization microorganisms (PSM) and plant growth promoting Rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad Sci Eng Technol 49:90–93

    Google Scholar 

  • Yong JWH, Ge L, Ng YF, Tan SN (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14(12):5144–5164. https://doi.org/10.3390/molecules14125144

    Article  CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Indonesian Institute of Sciences for the research activities. We thank the research staff and the technical staff of agriculture microbiology laboratory for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarjiya Antonius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonius, S., Agustiyani, D., Dewi, T.K., Laili, N., Osaki, M. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) and Compost Materials for AeroHydro Culture. In: Osaki, M., Tsuji, N., Foead, N., Rieley, J. (eds) Tropical Peatland Eco-management. Springer, Singapore. https://doi.org/10.1007/978-981-33-4654-3_9

Download citation

Publish with us

Policies and ethics