Skip to main content

Recent Advances in Numerical Methods, Machine Learning, and Computer Science

  • Conference paper
  • First Online:
Smart Modelling for Engineering Systems

Abstract

The chapter presents a brief description of chapters that contribute to the recent advances in numerical methods in continuum mechanics, computational physics. Also, this chapter deals with machine learning and computer science. The fourth part of the book presents novel computational methods in continuum mechanics. Modern methods in mathematical physics are presented in the fifth part of the book. The sixth part of the book deals with machine learning. Computer science is discussed in the seventh part of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kudryashova, T., Karamzin, Yu., Podryga, V., Polyakov, S.: Two-scale computation of N2–H2 jet flow based on QGD and MMD on heterogeneous multi-core hardware. Adv. Eng. Softw. 120, 79–87 (2018)

    Article  Google Scholar 

  2. Belotserkovskii, O.M., Gushchin, V.A., Shchennikov, V.V.: Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid. USSR Comput. Math. Math. Phys. 15(1), 190–200 (1975)

    Article  Google Scholar 

  3. Tolstykh, A.I.: 16th and 32nd multioperators based schemes for smooth and discontinuous solutions. Commun. In Comput. Phys. 45, 33–45 (2017)

    Google Scholar 

  4. Aristova, E.N., Ovcharov, G.I.: Hermitian characteristic scheme for linear inhomogeneous transfer equation. Math. Models Comput. Simul. 12(6), 845–855 (2020)

    MATH  Google Scholar 

  5. Shevelev, Yu.D.: Application of 3-D quasi-conformal mappings for grid generation. Comput. Math. Math. Phys. 58(8), 1280–1286 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chikitkin, A.V., Kornev, E.K., Titarev, V.A.: Numerical solution of the Boltzmann equation with S-model collision integral using tensor decompositions. CoRR ArXiv Preprint, arXiv:1912.04582 (2019)

  7. Koldoba, A.V., Ustyugova, G.V.: Difference scheme with a symmetry analyzer for equations of gas dynamics. Math. Models Comput. Simul. 12(2), 125–132 (2020)

    Article  MathSciNet  Google Scholar 

  8. Guskov, S.Yu., Azechi, H., Demchenko, N.N., Demchenko, V.V., Doskoch, I.Ya., Murakami, M., Nagatomo, H., Rozanov, V.B., Sakaiya, S., Stepanov, R.V.: Laser-driven acceleration of a dense matter up to ‘thermonuclear’ velocities. Plasma Phys. Control. Fusion 49(10), 1689–1706 (2007)

    Google Scholar 

  9. Lobanov, A.I., Mirov, FKh.: A hybrid difference scheme under generalized approximation condition in the space of undetermined coefficients. Comput. Math. Math. Phys. 58(8), 1270–1279 (2018)

    Article  MathSciNet  Google Scholar 

  10. Lopato, A.I., Eremenko, A.G., Utkin, P.S., Gavrilov, D.A.: Numerical simulation of detonation initiation: The quest of grid resolution. In: Jain, L., Favorskaya, M., Nikitin, I., Reviznikov, D. (eds.) Advances in Theory and Practice of Computational Mechanics. Smart Innovation, Systems and Technologies, vol. 173, pp. 79–89. Springer, Singapore (2020)

    Chapter  Google Scholar 

  11. Aristov, V.V., Frolova, A.A., Zabelok, S.A.: Supersonic flows with nontraditional transport described by kinetic methods. Commun. Comput. Phys. 11(4), 1334–1346 (2012)

    Article  Google Scholar 

  12. Pyrkova, O.A., Pyrkov, V.N., Vasilets, P.M.: Changing the geometry of the virtual lattice of the multicenter Schrodinger equation when determining eigenfunctions using the Fourier transform in time. In: XXVII International Conference on Mathematics, Economics, Education, XI Symposium Fourier Series and their Applications, Novorossiysk, Russia, (2020) (in print)

    Google Scholar 

  13. Lapshin, V.B., Skubachevskiy, A.A., Belinsky, A.V., Bugaev, A.S.: Emission spectrum and trajectory of a charged particle in the field of an inhomogeneous electromagnetic wave. Proc. Acad. Sci. 488(6), 1–5 (2019)

    Google Scholar 

  14. Favorskaya, M., Pyataeva, A., Popov, A.: Spatio-temporal smoke clustering in outdoor scenes based on boosted random forests. Procedia Comput. Sci. 96, 762–771 (2016)

    Article  Google Scholar 

  15. Muratov, M.V., Biryukov, V.A., Petrov, I.B.: Solution of the fracture detection problem by machine learning methods. Doklady Math. 101(2), 169–171 (2020)

    Article  Google Scholar 

  16. Vasyukov, A.V., Elovenkova, M.A., Petrov, I.B.: Modeling of thin fiber deformation and destruction under dynamic load. Matem. Mod. 32(5), 95–102 (in Russian) (2020)

    Google Scholar 

  17. Beklemysheva, K.A., Grigoriev, G.K., Kulberg, N.S., Petrov, I.B., Vasyukov, A.V., Vassilevski, Y.V.: Numerical simulation of aberrated medical ultrasound signals. Russian J. Numeric. Anal. Math. Model. 33(5), 277–288 (2018)

    Article  MathSciNet  Google Scholar 

  18. Karpov, V.E., Konkov, K.A.: The basics of operating systems. In: Lecture Course. 3rd edn. Fizmatkniga, Moscow (in Russian) (2019)

    Google Scholar 

  19. Babichev, S.L., Konkov, K.A.: Distributed System: Textbook for Universities. Urait (in Russian), Moscow (2019)

    Google Scholar 

  20. Guskova, M., Shchur, V., Shchur, L.: Simulation of drop oscillation using the lattice Boltzmann method. Lobachevskii J. Math. 41, 992–995 (2020)

    Article  MathSciNet  Google Scholar 

  21. Malovichko, M., Khokhlov, N., Yavich, N., Zhdanov, M.: Acoustic 3D modeling by the method of integral equations. Comput. Geosci. 111, 223–234 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita N. Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C. (2021). Recent Advances in Numerical Methods, Machine Learning, and Computer Science. In: Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C. (eds) Smart Modelling for Engineering Systems. Smart Innovation, Systems and Technologies, vol 215. Springer, Singapore. https://doi.org/10.1007/978-981-33-4619-2_1

Download citation

Publish with us

Policies and ethics