Skip to main content

Hyper-Heuristic Strategy for Input-Output-Based Interaction Testing

  • Conference paper
  • First Online:
Recent Trends in Mechatronics Towards Industry 4.0

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 730))

  • 1472 Accesses

Abstract

Software testing aims at exploring faults within software in order to ensure it meets all necessary specifications. Test case design strategies play key role in software testing. Classical test case design strategies, however, do not sufficiently include support for exploration of faults due to interaction between parameter values. New strategies known as t-way strategies (where t expresses interaction strength) have been developed for finding interaction faults. However, existing t-way strategies for input-output-based relationship (IOR) interaction testing mostly adopt greedy algorithms which often generate poor quality test data. Therefore, this paper presents the design of a new IOR test suite generation strategy called IOR_HH based on the exponential Monte Carlo with counter (EMCQ) hyper-heuristic. EMCQ is a parameter free hyper-heuristic which works as controller of the three implemented low-level meta-heuristic operators, namely crossover, peer learning and global pollination in the proposed IOR_HH strategy. Experimental results demonstrate the impact of the proposed strategy against existing computational strategies for IOR interaction testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed BS, Zamli KZ, Afzal W, Bures M (2017) Constrained interaction testing: a systematic literature study. IEEE Access 5

    Google Scholar 

  2. Younis MI, Zamli KZ, Isa NAM (2008) MIPOG-Modification of the IPOG strategy for t-way software testing. In: Distributed frameworks and applications, pp 1–6. IEEE, Penang, Malaysia

    Google Scholar 

  3. Othman RR, Zamli KZ, Mohamad SMS (2013) T-way testing strategies: a critical survey and analysis. Int J Dig Content Technol Appl 7(9):222

    Google Scholar 

  4. Zamli KZ, Alsewari ARA, Hassin MHM (2013) On test case generation satisfying the MC/DC criterion. Int J Adv Soft Comput Appl 5(3)

    Google Scholar 

  5. Schroeder PJ, Korel B (2000) Black-box test reduction using input-output analysis. In: International symposium on software testing and analysis, ACM, Portland, USA (2000)

    Google Scholar 

  6. Alsewari ARA, Tairan NM, Zamli KZ (2015) Survey on input output relation based combination test data generation strategies. ARPN J Eng Appl Sci 10(18):8427–8430

    Google Scholar 

  7. Schroeder PJ, Faherty P, Korel B (2002) Generating expected results for automated black-box testing. In: 17th IEEE international conference on automated software engineering, pp 139–148. IEEE

    Google Scholar 

  8. Ziyuan W, Changhai N, Baowen X (2007) Generating combinatorial test suite for interaction relationship. In: 4th international workshop on software quality assurance, pp 55–61. ACM, Dubrovnik, Croatia

    Google Scholar 

  9. Wang ZY, Xu BW, Nie CH (2008) Greedy heuristic algorithms to generate variable strength combinatorial test suite. In: Proceedings of the 8th international conference on quality software, pp 155–160. IEEE Computer Society

    Google Scholar 

  10. Othman RR, Zamli KZ (2011) ITTDG: integrated t-way test data generation strategy for interaction testing. Sci Res Essays 6(17):3638–3648

    Article  Google Scholar 

  11. Ong H, Zamli KZ (2011) Development of interaction test suite generation strategy with input-output mapping supports. Sci Res Essays 6(16):3418–3430

    Article  Google Scholar 

  12. Othman RR, Zamli KZ, Nugroho LE (2012) General variable strength t-way strategy supporting flexible interactions. Maejo Int J Sci Technol 6(3):415

    Google Scholar 

  13. Ahmed BS, Gambardella LM, Afzal W, Zamli KZ (2017) Handling constraints in combinatorial interaction testing in the presence of multi objective particle swarm and multithreading. Inf Softw Technol 86:20–36

    Google Scholar 

  14. Alsewari ARA, Zamli KZ (2011) Interaction test data generation using harmony search algorithm. In: IEEE symposium on industrial electronics and applications, pp 559–564. IEEE, Langkawi, Malaysia

    Google Scholar 

  15. Din F, Alsewari ARA, Zamli KZ (2017) A parameter free choice function based hyper-heuristic strategy for pairwise test generation. In: IEEE international conference on software quality, reliability and security companion, pp 85–91. IEEE, Prague, Czech Republic

    Google Scholar 

  16. Din F, Zamli KZ (2018) Fuzzy adaptive teaching learning-based optimization strategy for GUI functional test cases generation. In: 7th international conference on software and computer applications, pp 92–96. ACM, Kuantan, Malaysia

    Google Scholar 

  17. Nasser AB, Alsewari AA, Tairan NM, Zamli KZ (2017) Pairwise test data generation based on flower pollination algorithm. Malaysian J Comp Sci 30(3):242–257

    Article  Google Scholar 

  18. Nasser AB, Zamli KZ, Alsewari AA, Ahmed BS (2018) An Elitist-flower pollination-based strategy for constructing sequence and sequence-less t-way test suite. Int J Bio-Inspired Comput 12(2):115–127

    Article  Google Scholar 

  19. Zamli KZ, Din F, Ramli N, Ahmed BS (2019) Software module clustering based on the fuzzy adaptive teaching learning based optimization algorithm. arXiv preprint arXiv:1902.11159

  20. Nasser AB, Zamli KZ, Alsewari ARA, Ahmed BS (2018) Hybrid flower pollination algorithm strategies for t-way test suite generation. PLoS ONE 13(5):e0195187

    Article  Google Scholar 

  21. Zamli KZ, Alkazemi BY, Kendall G (2016) A Tabu search hyper-heuristic strategy for t-way test suite generation. Appl Soft Comp 44:57–74

    Google Scholar 

  22. Zamli KZ, Din F, Kendall G, Ahmed BS (2017) An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t-way test suite generation. Inf Sci 399:121–153

    Google Scholar 

  23. Din F, Zamli KZ (2018) Hyper-Heuristic based strategy for pairwise test case generation. Adv Sci Lett 24(10):7333–7338

    Article  Google Scholar 

  24. Zamli KZ (2018) Enhancing generality of meta-heuristic algorithms through adaptive selection and hybridization. In: International conference on information and communications technology, pp 67–71. IEEE, Yogyakarta, Indonesia

    Google Scholar 

  25. Ayob M, Kendall G (2003) A Monte Carlo hyper-heuristic to optimise component placement sequencing for multi head placement machine. In: International conference on intelligent technologies, pp 132–141, Thailand

    Google Scholar 

  26. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press

    Google Scholar 

  27. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  28. Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, pp 240–249. Springer

    Google Scholar 

Download references

Acknowledgements

The work reported in this paper is funded by Fundamental Research Grant from Ministry of Higher Education Malaysia titled: A Reinforcement Learning Sine Cosine based Strategy for Combinatorial Test Suite Generation. We thank MOHE for the contribution and supports, Grant Number: RDU170103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrud Din .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Din, F., Zamli, K.Z. (2022). Hyper-Heuristic Strategy for Input-Output-Based Interaction Testing. In: Ab. Nasir, A.F., Ibrahim, A.N., Ishak, I., Mat Yahya, N., Zakaria, M.A., P. P. Abdul Majeed, A. (eds) Recent Trends in Mechatronics Towards Industry 4.0. Lecture Notes in Electrical Engineering, vol 730. Springer, Singapore. https://doi.org/10.1007/978-981-33-4597-3_88

Download citation

Publish with us

Policies and ethics