Skip to main content

Rain Classification for Autonomous Vehicle Navigation Using Machine Learning

  • Conference paper
  • First Online:
Recent Trends in Mechatronics Towards Industry 4.0

Abstract

Autonomous vehicles (AV) has gained popularity in research and development in many countries due to the advancement of sensor technology that is used in the AV system. Despite that, sensing and perceiving in harsh weather conditions has been an issue in this modern sensor technology as it needs the ability to adapt to human behaviour in various situations. This paper aims to classify clear and rainy weather using a physical-based simulator to imitate the real-world environment which consists of roads, vehicles, and buildings. The real-world environment was constructed in a physical-based simulator to publish the data logging and testing using the ROS network. Point cloud data generated from LiDAR with a different frame of different weather are to be coupled with three machine learning models namely Naïve Bayes (NB), Random Forest (RF), and k-Nearest Neighbour (kNN) as classifiers. The preliminary analysis demonstrated that with the proposed methodology, the RF machine learning model attained a test classification accuracy (CA) of 99.9% on the test dataset, followed by kNN with a test CA of 99.4% and NB at 92.4%. Therefore, the proposed strategy has the potential to classify clear and rainy weather that provides objective-based judgement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bimbraw K (2015) Autonomous cars: past, present and future: a review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology. In: ICINCO 2015—12th international conference on informatics in control, automation and robotics, proceedings, 1(August), pp 191–198. https://doi.org/10.5220/0005540501910198

  2. Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) CARLA: an open urban driving simulator (CoRL), pp 1–16. Retrieved from http://arxiv.org/abs/1711.03938

  3. Filgueira A, González-Jorge H, Lagüela S, Díaz-Vilariño L, Arias P (2017) Quantifying the influence of rain in LiDAR performance. Measur J Int Measur Confederation 95:143–148. https://doi.org/10.1016/j.measurement.2016.10.009

  4. Goodin C, Carruth D, Doude M, Hudson C (2019) Predicting the influence of rain on LIDAR in ADAS. Electronics 8(1):89. https://doi.org/10.3390/electronics8010089

    Article  Google Scholar 

  5. Hamid UZA, Zakuan FRA, Zulkepli KA, Azmi MZ, Zamzuri H, Rahman MAA, Zakaria MA (2017) Autonomous emergency braking system with potential field risk assessment for frontal collision mitigation. In: 2017 IEEE conference on systems, process and control (ICSPC) (December), pp 71–76. https://doi.org/10.1109/SPC.2017.8313024

  6. Kutila M, Pyykönen P, Ritter W, Sawade O, Schäufele B (2016) Automotive LIDAR sensor development scenarios for harsh weather conditions, pp 265–270. https://doi.org/10.1109/ITSC.2016.7795565

  7. Kwan MS, Tanggang FT, Juneng L (2011) Projected changes in future climate extremes in Malaysia. Nat Symp Clim Change Adapt 42(8):1051–1058

    Google Scholar 

  8. Omotosho TV, Mandeep JS, Abdullah M, Adediji AT (2013) Distribution of one-minute rain rate in Malaysia derived from TRMM satellite data, pp 2013–2022. https://doi.org/10.5194/angeo-31-2013-2013

  9. Sai Tarun GB, Sriram JV, Sairam K, Sreenivas KT, Santhi MVBT (2019) Rainfall prediction using machine learning techniques. Int J Innovative Technol Exploring Eng 8(7):957–963. https://doi.org/10.13140/RG.2.2.26691.04648

  10. Teri SS, Musliman IA (2019) Machine learning in big lidar data: a review. Int Arch Photogrammetry Remote Sens Spat Inf Sci—ISPRS Arch 42(4/W16):641–644. https://doi.org/10.5194/isprs-archives-XLII-4-W16-641-2019

Download references

Acknowledgements

The author would like to thank Ministry of Higher Education Malaysia (KPT) and Universiti Malaysia Pahang (www.ump.edu.my) for financial supports given under FRGS/1/2018/TK08/UMP/02/1 and RDU1903139. The authors also thank the research team from Autonomous Vehicle Laboratory AEC, Innovative Manufacturing, Mechatronics and Sport Laboratory (iMAMS); who provided insight and expertise that greatly assisted in the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aizzat Zakaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habeeb Mohamed, A.H. et al. (2022). Rain Classification for Autonomous Vehicle Navigation Using Machine Learning. In: Ab. Nasir, A.F., Ibrahim, A.N., Ishak, I., Mat Yahya, N., Zakaria, M.A., P. P. Abdul Majeed, A. (eds) Recent Trends in Mechatronics Towards Industry 4.0. Lecture Notes in Electrical Engineering, vol 730. Springer, Singapore. https://doi.org/10.1007/978-981-33-4597-3_80

Download citation

Publish with us

Policies and ethics