Skip to main content

Modified Particle Swarm Optimization with Unique Self-cognitive Learning for Global Optimization Problems

  • Conference paper
  • First Online:
Recent Trends in Mechatronics Towards Industry 4.0

Abstract

Although different modified versions of particle swarm optimization (PSO) were proposed in past decades to solve global optimization problems, the appropriate mechanism used to attain proper balancing of algorithm’s exploration and exploitation searches remains as an open-ended challenges. A modified PSO with unique self-cognitive learning (MPSO-USCL) is proposed in this paper to address this issue. For each particle, a unique exemplar can be generated by the proposed USCL module to replace the self-cognitive component of each particle and guide its search process towards the promising regions of search space with different levels of exploration and exploitation strengths. Extensive simulation studies are performed to compare the optimization performances of MPSO-USCL with six existing PSO variants using 12 benchmark functions. The proposed MPSO-USCL is reported to outperform its peer algorithms for all benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang CK, Tang SH, Mashohor S, Arrifin MKAM (2014) Solving continuous trajectory and forward kinematics simultaneously based on ANN. Int J Comput Commun Control

    Google Scholar 

  2. Abdullah Al-Sanabani DG, Solihin MI, Liew PP, Astuti W, Ang CK, Lim WH (2019) Development of non-destructive mango assessment using handheld spectroscopy and machine learning regression. J Phys Conf Ser 1367:012030

    Article  Google Scholar 

  3. Alrifaey M, Sai Hong T, Supeni EE, As’arry A, Ang CK (2019) Identification and prioritization of risk factors in an electrical generator based on the hybrid FMEA framework. Energies 12, 649

    Google Scholar 

  4. Yao L, Shen J, Lim WH (2016) Real-Time energy management optimization for smart household. In: 2016 IEEE international conference on internet of things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData), Chengdu, China, pp 20–26

    Google Scholar 

  5. Yao L, Damiran Z, Lim WH (2017) Energy management optimization scheme for smart home considering different types of appliances. In: 2017 IEEE International conference on environment and electrical engineering and 2017 IEEE industrial and commercial power systems Europe (EEEIC/ I&CPS Europe), Milan, Italy, pp 1–6

    Google Scholar 

  6. Yao L, Lim WH (2018) Optimal purchase strategy for demand bidding. IEEE Trans Power Syst 33:2754–2762

    Article  Google Scholar 

  7. Yao L, Lim WH, Tiang SS, Tan TH, Wong CH, Pang JY (2018) Demand bidding optimization for an aggregator with a genetic algorithm. Energies 11:2498

    Article  Google Scholar 

  8. Yao L, Yao L, Lim WH (2018) A soft curtailment of wide-area central air conditioning load. Energies 11:492

    Article  Google Scholar 

  9. Yao L, Chen Y, Lim WH (2015) Internet of things for electric vehicle: an improved decentralized charging scheme. In: 2015 IEEE international conference on data science and data intensive systems, Sydney, NSW, Australia, pp. 651–658

    Google Scholar 

  10. Natarajan E, Kaviarasan V, Lim WH, Tiang SS, Tan TH (2018) Enhanced multi-objective teaching-learning-based optimization for machining of delrin. IEEE Access 6:51528–51546

    Article  Google Scholar 

  11. Natarajan E, Ang CT, Lim WH, Kosalishkwaran G, Ang CK, Parasuraman S (2019) Design topology optimization and kinematics of a multi-modal quadcopter and quadruped. In: 2019 IEEE student conference on research and development (SCOReD), pp. 214–218. Bandar Ser Iskandar, Malaysia

    Google Scholar 

  12. Natarajan E, Kaviarasan V, Lim WH, Tiang SS, Parasuraman S, Elango S (2019) Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE). J Intell Manuf

    Google Scholar 

  13. Tarawneh MA, Yu, LJ, Tarawni MA, Ahmad SHJ, Al-Banawi O, Bathiha MA (2015) High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J Eng 12:437–442

    Google Scholar 

  14. Yu LJ, Sahrim AH, Kong I, Mouad AT (2012) Microwave absorbing properties of nickel-zinc ferrite/multiwalled nanotube thermoplastic natural rubber composites. Adv Mater Res 501:24–28

    Article  Google Scholar 

  15. Yu LJ, Ahmad SH, Kong I, Tarawneh MA, Flaifel MH (2013) Preparation and characterisation of NiZn ferrite/multiwalled nanotubes thermoplastic natural rubber composite. Int J Mater Eng Innov 4:214–224

    Article  Google Scholar 

  16. Yu LJ, Ahmad SH, Kong I, Appadu S, Flaifel MH (2012) Magnetic properties, microsturcture and mophology of thermoplastics natural rubber composite reinforced with NiZn ferrite/Mwnt. Sains Malaysiana 41:453–458

    Google Scholar 

  17. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, Perth, WA, Australia, pp 1942–1948, vol 1944

    Google Scholar 

  18. Lim WH, Isa NAM (2015) Particle swarm optimization with dual-level task allocation. Eng Appl Artif Intell 38:88–110

    Article  Google Scholar 

  19. Lim WH, Isa NAM, Tiang SS, Tan TH, Natarajan E, Wong CH, Tang JR (2018) A self-adaptive topologically connected-based particle swarm optimization. IEEE Access 6:65347–65366

    Article  Google Scholar 

  20. Ang KM, Lim WH, Isa NAM, Tiang SS, Wong CH (2020) A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems. Expert Syst Appl 140:112882

    Article  Google Scholar 

  21. Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25:1–54

    Article  Google Scholar 

  22. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10:281–295

    Article  Google Scholar 

  23. Tang Y, Wang Z, Fang J-A (2011) Feedback learning particle swarm optimization. Appl Soft Comput 11:4713–4725

    Article  Google Scholar 

  24. Zhan Z, Zhang J, Li Y, Shi Y (2011) Orthogonal learning particle Swarm optimization. IEEE Trans Evol Comput 15:832–847

    Article  Google Scholar 

  25. De Oca, MAM, Stutzle T, Birattari M, Dorigo M (2009) Frankenstein’s PSO: a composite particle swarm optimization algorithm. IEEE Trans Evol Comput 13:1120–1132

    Google Scholar 

  26. Zhan Z, Zhang J, Li Y, Chung HS (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B (Cybern) 39:1362–1381

    Google Scholar 

  27. Kathrada M (2009) The flexi-PSO: towards a more flexible particle swarm optimizer. OPSEARCH 46:52–68

    Article  MathSciNet  Google Scholar 

  28. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8:225–239

    Google Scholar 

  29. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hong Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ang, K.M. et al. (2022). Modified Particle Swarm Optimization with Unique Self-cognitive Learning for Global Optimization Problems. In: Ab. Nasir, A.F., Ibrahim, A.N., Ishak, I., Mat Yahya, N., Zakaria, M.A., P. P. Abdul Majeed, A. (eds) Recent Trends in Mechatronics Towards Industry 4.0. Lecture Notes in Electrical Engineering, vol 730. Springer, Singapore. https://doi.org/10.1007/978-981-33-4597-3_25

Download citation

Publish with us

Policies and ethics