Skip to main content

Defining Acute Kidney Injury in Children

  • 340 Accesses

Abstract

Acute kidney injury (AKI) refers to an abrupt decline in kidney function characterized by reduced excretion of waste products, deranged electrolytes, and disrupted fluid homeostasis. Unfortunately, until recently AKI was defined inconsistently, confounding epidemiologic analyses and hampering therapeutic studies. Fortunately, in 2004 the critical care nephrology community embarked on a consensus-building process culminating with the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. KDIGO defines AKI based upon progressive increases in serum creatinine and more severe oliguria. AKI defined according to these metrics has been associated with greater morbidity and higher mortality, however, creatinine and urine output are functional metrics; both are proxies for injury, and neither provide etiologic information. The goals of the chapter are to review metrics of renal function, dysfunction, and injury as well as to discuss the evolution of the current consensus definition for AKI.

Keywords

  • Acute kidney injury
  • Pediatrics
  • Children
  • AKI definition

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-33-4554-6_12
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-981-33-4554-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 12.1

References

  1. Goldstein SMSaSL. Acute kidney injury in children: definition and epidemiology. In: Goldstein ADaSL, editor. Critical care nephrology and renal replacement therapy in children. New York: Springer; 2018. p. 29–42.

    Google Scholar 

  2. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, Investigators A. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20.

    CrossRef  Google Scholar 

  3. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.

    CrossRef  Google Scholar 

  4. McGregor TL, Jones DP, Wang L, Danciu I, Bridges BC, Fleming GM, et al. Acute kidney injury incidence in noncritically ill hospitalized children, adolescents, and young adults: a retrospective observational study. Am J Kidney Dis. 2016;67(3):384–90.

    CrossRef  Google Scholar 

  5. Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, et al. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8(10):1661–9.

    CrossRef  Google Scholar 

  6. Sutherland SM, Kwiatkowski DM. Acute kidney injury in children. Adv Chronic Kidney Dis. 2017;24(6):380–7.

    CrossRef  Google Scholar 

  7. Uber AM, Sutherland SM. Acute kidney injury in hospitalized children: consequences and outcomes. Pediatr Nephrol. 2018;35:213–20.

    CrossRef  Google Scholar 

  8. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59(4):523–30.

    CrossRef  Google Scholar 

  9. Kidney Disease. Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2:1–138.

    CrossRef  Google Scholar 

  10. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.

    CAS  CrossRef  Google Scholar 

  11. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute dialysis quality initiative w. acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute Dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204–12.

    CrossRef  Google Scholar 

  12. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    CrossRef  Google Scholar 

  13. Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Garcia P, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61.

    CrossRef  Google Scholar 

  14. Pasala S, Carmody JB. How to use... serum creatinine, cystatin C and GFR. Arch Dis Child Educ Pract Ed. 2017;102(1):37–43.

    CrossRef  Google Scholar 

  15. Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.

    CrossRef  Google Scholar 

  16. Hari P, Bagga A, Mahajan P, Lakshmy R. Effect of malnutrition on serum creatinine and cystatin C levels. Pediatr Nephrol. 2007;22(10):1757–61.

    CrossRef  Google Scholar 

  17. Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14(5):e218–e24.

    CrossRef  Google Scholar 

  18. Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011;80(7):760–7.

    CAS  CrossRef  Google Scholar 

  19. Kaddourah A, Basu RK, Goldstein SL, Sutherland SM. Oliguria and acute kidney injury in critically ill children: implications for diagnosis and outcomes. Pediatr Crit Care Med. 2019;20(4):332–9.

    CrossRef  Google Scholar 

  20. Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303–53.

    PubMed  PubMed Central  Google Scholar 

  21. Porrini E, Ruggenenti P, Luis-Lima S, Carrara F, Jimenez A, de Vries APJ, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019;15(3):177–90.

    CAS  CrossRef  Google Scholar 

  22. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    CrossRef  Google Scholar 

  23. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.

    CAS  CrossRef  Google Scholar 

  24. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    CrossRef  Google Scholar 

  25. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9.

    CAS  CrossRef  Google Scholar 

  26. Meersch M, Schmidt C, Van Aken H, Rossaint J, Gorlich D, Stege D, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One. 2014;9(10):e110865.

    CrossRef  Google Scholar 

  27. Gist KM, Goldstein SL, Wrona J, Alten JA, Basu RK, Cooper DS, et al. Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol. 2017;32:1611–9.

    CrossRef  Google Scholar 

  28. Westhoff JH, Tönshoff B, Waldherr S, Pöschl J, Teufel U, Westhoff TH, et al. Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2)• insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS One. 2015;10(11):e0143628.

    CrossRef  Google Scholar 

  29. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012–24.

    CAS  CrossRef  Google Scholar 

  30. Fuhrman DY, Kellum JA, Joyce EL, Miyashita Y, Mazariegos GV, Ganoza A, et al. The use of urinary biomarkers to predict acute kidney injury in children after liver transplant. Pediatr Transplant. 2019:e13608.

    Google Scholar 

  31. Kari JA, Shalaby MA, Sofyani K, Sanad AS, Ossra AF, Halabi RS, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) and serum cystatin C measurements for early diagnosis of acute kidney injury in children admitted to PICU. World J Pediatr. 2018;14(2):134–42.

    CAS  CrossRef  Google Scholar 

  32. Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–9.

    CAS  CrossRef  Google Scholar 

  33. Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol. 2008;3(4):948–54.

    CrossRef  Google Scholar 

  34. Siew ED, Matheny ME, Ikizler TA, Lewis JB, Miller RA, Waitman LR, et al. Commonly used surrogates for baseline renal function affect the classification and prognosis of acute kidney injury. Kidney Int. 2010;77(6):536–42.

    CrossRef  Google Scholar 

  35. Bagshaw SM, Uchino S, Cruz D, Bellomo R, Morimatsu H, Morgera S, et al. A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol Dial Transplant. 2009;24(9):2739–44.

    CAS  CrossRef  Google Scholar 

  36. Hessey E, Ali R, Dorais M, Morissette G, Pizzi M, Rink N, et al. Evaluation of height-dependent and height-independent methods of estimating baseline serum creatinine in critically ill children. Pediatr Nephrol. 2017;32(10):1953–62.

    CrossRef  Google Scholar 

  37. O’Neil ER, Devaraj S, Mayorquin L, Starke HE, Buffone GJ, Loftis LL, et al. Defining pediatric community-acquired acute kidney injury: an observational study. Pediatr Res. 2019;87:564–8.

    CrossRef  Google Scholar 

  38. Selewski DT, Cornell TT, Heung M, Troost JP, Ehrmann BJ, Lombel RM, et al. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med. 2014;40(10):1481–8.

    CrossRef  Google Scholar 

  39. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015;26(9):2231–8.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Sutherland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sutherland, S.M. (2021). Defining Acute Kidney Injury in Children. In: Sethi, S.K., Raina, R., McCulloch, M., Bunchman, T.E. (eds) Advances in Critical Care Pediatric Nephrology. Springer, Singapore. https://doi.org/10.1007/978-981-33-4554-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4554-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4553-9

  • Online ISBN: 978-981-33-4554-6

  • eBook Packages: MedicineMedicine (R0)