Skip to main content

Impact of Climate Change on the Incidence and Transfer of Food- and Water-Borne Diseases

  • Chapter
  • First Online:
Microbiomes and the Global Climate Change

Abstract

Presently, climate change is considered as a serious global environmental challenge influencing growth and survival of pathogens of many food- and water-borne diseases as well as their transmission pathways. Climate change is the major factor to increase the chances of discomfort by alternation in weather, high temperatures, variation in rainfall, and deficit of water. Heavy rainfall will raise the risk of more waterborne illnesses especially in such localities where water drainage system is poorly developed leading to water stagnation. Changes in the climatic condition can increase the burden of disease. Fundamentally all the calamity of climate change like higher temperature, heavy rainfall can have adverse effect on disease development. And there are documented evidences that these changes affect food security and food safety. Environmental changes can possibly impact the world’s natural framework. Developing countries like India with constrained assets are required to confront a large group of health impacts because of environmental change, including food- and water-borne disease, for example, cholera, typhoid, shigellosis, and food poisoning. This chapter summarizes how environmental changes impact the proliferation and transfer of food- and water-borne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adak GK, Long SM, O’Brien SJ (2002) Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut 51:832–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MJ, Miyoshi SI, Shinoda S (2003) Studies on pathogenic Vibrio parahaemolyticus during a warm weather season in the Seto Inland Sea, Japan. Environ Microbiol 5(8):706–710

    Article  PubMed  Google Scholar 

  • Allerberger F, Wagner M (2010) Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 16(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Anas M, Ahmad S, Malik A (2019) Microbial escalation in meat and meat products and its consequences. In: Health and safety aspects of food processing technologies. Springer, Cham, pp 29–49

    Chapter  Google Scholar 

  • Anyamba A, Chretien JP, Britch SC, Soebiyanto RP, Small JL, Jepsen R et al (2019) Global disease outbreaks associated with the 2015–2016 El Niño event. Sci Rep 9(1):1930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartoszewicz M, Hansen BM, Swiecicka I (2008) The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol 25(4):588–596

    Article  CAS  PubMed  Google Scholar 

  • Bi P, Cameron AS, Zhang Y, Parton KA (2008) Weather and notified campylobacter infections in temperate and sub-tropical regions of Australia: an ecological study. J Infect 57(4):317–323

    Article  PubMed  Google Scholar 

  • Böer SI, Heinemeyer EA, Luden K, Erler R, Gerdts G, Janssen F, Brennholt N (2013) Temporal and spatial distribution patterns of potentially pathogenic Vibrio spp. at recreational beaches of the German North Sea. Microbial Ecol 65(4):1052–1067

    Google Scholar 

  • Brynestad S, Granum PE (2002) Clostridium perfringens and foodborne infections. Int J Food Microbiol 74(3):195–202

    Article  PubMed  Google Scholar 

  • Cantet F, Hervio-Heath D, Caro A, Le Mennec C, Monteil C, Quéméré C et al (2013) Quantification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae in French Mediterranean coastal lagoons. Res Microbiol 164(8):867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlin F, Brillard J, Broussolle V, Clavel T, Duport C, Jobin M et al (2010) Adaptation of Bacillus cereus, a ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res Int 43(7):1885–1894

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (2012) Foodborne diseases active surveillance network (FoodNet): FoodNet surveillance report for 2011 (final report). US Department of Health and Human Services, CDC, Atlanta, GA

    Google Scholar 

  • Chersich MF, Scorgie F, Rees H, Wright CY (2018) How climate change can fuel listeriosis outbreaks in South Africa. S Afr Med J 108(6):453–454

    Article  CAS  PubMed  Google Scholar 

  • Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C et al (2007) Incidence and tracking of Escherichia coli O157: H7 in a major produce production region in California. PloS One 2(11):e1159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R et al (2009) Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. Lancet 373(9676):1693–1733

    Article  PubMed  Google Scholar 

  • D’Souza RM, Becker NG, Hall G, Moodie KB (2004) Does ambient temperature affect foodborne disease? Epidemiology 15(1):86–92

    Article  PubMed  Google Scholar 

  • Daniel JH, Lewis LW, Redwood YA, Kieszak S, Breiman RF, Flanders WD et al (2011) Comprehensive assessment of maize aflatoxin levels in Eastern Kenya, 2005–2007. Environ Health Perspect 119(12):1794–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David JM, Ravel A, Nesbitt A, Pintar K, Pollari F (2014) Assessing multiple foodborne, waterborne and environmental exposures of healthy people to potential enteric pathogen sources: effect of age, gender, season, and recall period. Epidemiol Infect 142(1):28–39

    Article  CAS  PubMed  Google Scholar 

  • Dorner SM, Anderson WB, Slawson RM, Kouwen N, Huck PM (2006) Hydrologic modeling of pathogen fate and transport. Environ Sci Technol 40(15):4746–4753

    Article  CAS  PubMed  Google Scholar 

  • Doyle MP, Schoeni JL (1984) Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Appl Environ Microbiol 48(4):855–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake SL, DePaola A, Jaykus LA (2007) An overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci Food Saf 6(4):120–144

    Article  CAS  Google Scholar 

  • Effler E, Isaäcson M, Arntzen L, Heenan R, Canter P, Barrett T et al (2001) Factors contributing to the emergence of Escherichia coli O157 in Africa. Emerg Infect Dis 7(5):812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) (2018) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 16(12):e05500

    Article  CAS  Google Scholar 

  • European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) (2019) The European Union one health 2018 Zoonoses Report. EFSA J 17(12):e05926

    Article  Google Scholar 

  • Evans AE, Hanjra MA, Jiang Y, Qadir M, Drechsel P (2012) Water quality: assessment of the current situation in Asia. Int J Water Res Dev 28(2):195–216

    Article  Google Scholar 

  • FAO (2008) Climate change: implications for food safety. Food and Agriculture Organisation, Rome, Italy

    Google Scholar 

  • FDA (2012) Bad Bug: Handbook of foodborne pathogenic microorganisms and natural toxins. CreateSpace Independent Publishing Platform, Scotts Valley, CA

    Google Scholar 

  • Fleury M, Charron DF, Holt JD, Allen OB, Maarouf AR (2006) A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces. Int J Biometeorol 50(6):385–391

    Article  PubMed  Google Scholar 

  • Foodnet (2019) Centers for disease control and prevention. https://www.cdc.gov/foodnet/index.html. Accessed 21 Dec 2018

  • Ford TE, Hamner S (2015) A perspective on the global pandemic of waterborne disease. Microb Ecol 76:2–8

    Article  PubMed  Google Scholar 

  • Franz E, van Bruggen AH (2008) Ecology of E. coli O157: H7 and Salmonella enterica in the primary vegetable production chain. Crit Rev Microbiol 34(3–4):143–161

    Article  PubMed  Google Scholar 

  • Fremaux B, Prigent-Combaret C, Vernozy-Rozand C (2008) Long-term survival of Shiga toxin-producing Escherichia coli in cattle effluents and environment: an updated review. Vet Microbiol 132(1–2):1–18

    Article  CAS  PubMed  Google Scholar 

  • Gonthier A, Guérin-Faublée V, Tilly B, Delignette-Muller ML (2001) Optimal growth temperature of O157 and non-O157 Escherichia coli strains. Lett Appl Microbiol 33(5):352–356

    Article  CAS  PubMed  Google Scholar 

  • Goulet V, Jacquet C, Martin P, Vaillant V, Laurent E, De Valk H (2006) Surveillance of human listeriosis in France, 2001–2003. Euro Surveill 11(6):79–81

    Article  CAS  PubMed  Google Scholar 

  • Greer A, Ng V, Fisman D (2008) Climate change and infectious diseases in North America: the road ahead. CMAJ 178(6):715–722

    PubMed  PubMed Central  Google Scholar 

  • Hashizume M, Faruque ASG, Terao T, Yunus M, Streatfield K, Yamamoto T, Moji K (2011) The Indian Ocean dipole and cholera incidence in Bangladesh: a time-series analysis. Environ Health Perspect 119(2):239–244

    Article  PubMed  Google Scholar 

  • Hellberg RS, Chu E (2016) Effect of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit Rev Microbiol 42(4):548–572

    Article  PubMed  Google Scholar 

  • Hofstra N (2011) Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water. Curr Opin Environ Sustain 3(6):471–479

    Article  Google Scholar 

  • Hofstra N, Vermeulen LC, Wondmagegn BY (2013, April) Climate change impacts on faecal indicator and waterborne pathogen concentrations and disease. In: EGU General Assembly Conference Abstract, EGU2013-8413

    Google Scholar 

  • Horseman MA, Surani S (2011) A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int J Infect Dis 15(3):e157–e166

    Article  PubMed  Google Scholar 

  • Izrael YA, Semenov SM, Anisimov OA, Anokhin YA, Velichko AA, Revich BA, Shiklomanov IA (2007) The fourth assessment report of the intergovernmental panel on climate change: working group II contribution. Russ Meteorol Hydrol 32(9):551–556

    Article  Google Scholar 

  • Jablonski LM (1997) Staphylococcus aureus. Food Microbiol: Fundam Front:353–375

    Google Scholar 

  • Jay M, Cooley M, Carychao D et al (2007) Escherichia coli O157:H7 in feral swine near spinach fields and cattle, Central California coast. Emerg Infect Dis 13:1908–1911

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson CN, Flowers AR, Noriea NF, Zimmerman AM, Bowers JC, DePaola A, Grimes DJ (2010) Relationships between environmental factors and pathogenic vibrios in the northern Gulf of Mexico. Appl Environ Microbiol 76(21):7076–7084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S et al (2012) Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol 78(20):7249–7257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Lee H, Lee JE, Chung MS, Ko GP (2013) Identification of human and animal fecal contamination after rainfall in the Han River, Korea. Microbes Environ 28(2):187–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovats RS, Edwards SJ, Hajat S, Armstrong BG, Ebi KL, Menne B (2004) The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries. Epidemiol Infect 132(3):443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovats RS, Edwards SJ, Charron D, Cowden J, D’Souza RM, Ebi KL et al (2005a) Climate variability and campylobacter infection: an international study. Int J Biometeorol 49(4):207–214

    Article  PubMed  Google Scholar 

  • Kovats RS, Edwards SJ, Charron D, Cowden J, D’Souza RM, Ebi KL, Gauci C et al (2005b) Climate variability and campylobacter infection: an international study. Int J Biometeorol 49(4):207–214

    Article  PubMed  Google Scholar 

  • Lake IR, Barker GC (2018) Climate change, foodborne pathogens and illness in higher-income countries. Curr Environ Health Rep 5(1):187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake IR, Gillespie IA, Bentham G, Nichols GL, Lane C, Adak GK, Threlfall EJ (2009) A re-evaluation of the impact of temperature and climate change on foodborne illness. Epidemiol Infect 137(11):1538–1547

    Article  CAS  PubMed  Google Scholar 

  • Lake IR, Hooper L, Abdelhamid A, Bentham G, Boxall AB, Draper A et al (2012) Climate change and food security: health impacts in developed countries. Environ Health Perspect 120(11):1520–1526

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambrechts AA, Human IS, Doughari JH, Lues JFR (2014) Efficacy of low-pressure foam cleaning compared to conventional cleaning methods in the removal of bacteria from surfaces associated with convenience food. Afr Health Sci 14(3):585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2(1):63–76

    PubMed  Google Scholar 

  • Levy K, Smith SM, Carlton EJ (2018) Climate change impacts on waterborne diseases: moving toward designing interventions. Curr Environ Health Rep 5(2):272–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipp EK, Rodriguez-Palacios C, Rose JB (2001) Occurrence and distribution of the human pathogen Vibrio vulnificus in a subtropical Gulf of Mexico estuary. In: The ecology and etiology of newly emerging marine diseases. Springer, Dordrecht, pp 165–173

    Chapter  Google Scholar 

  • Listeriosis (2019) European centre for disease prevention and control. http://ecdc.europa.eu/en/healthtopics/listeriosis/annual:surveillance-data/. Accessed 21 Dec 2018

  • Madigan, M., Martinko, J., Stahl, D., & Clark, D. (2012). Brock biology of microorganisms (San Francisco, USA:(13 eth) Pearson education)

    Google Scholar 

  • Mandrell RE (2009) Enteric human pathogens associated with fresh produce: sources, transport, and ecology. In: Microbial safety of fresh produce. Wiley, Hoboken, NJ, pp 5–41

    Google Scholar 

  • Manuel M (2006) In Katrina’s wake. Environ Health Perspect 114:A32–A39

    Article  PubMed  PubMed Central  Google Scholar 

  • McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O'Connor KA, Cosgrove S et al (2013) Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med 369:944–953

    Article  CAS  PubMed  Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367(9513):859–869

    Article  PubMed  Google Scholar 

  • Miettinen H, Wirtanen G (2006) Ecology of Listeria spp. in a fish farm and molecular typing of Listeria monocytogenes from fish farming and processing companies. Int J Food Microbiol 112(2):138–146

    Article  CAS  PubMed  Google Scholar 

  • Miettinen MK, Siitonen A, Heiskanen P, Haajanen H, Björkroth KJ, Korkeala HJ (1999) Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. J Clin Microbiol 37(7):2358–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller WA, Miller MA, Gardner IA, Atwill ER, Byrne BA, Jang S et al (2006) Salmonella spp., Vibrio spp., Clostridium perfringens, and Plesiomonas shigelloides in marine and freshwater invertebrates from coastal California ecosystems. Microb Ecol 52(2):198–206

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Taneja N, Sharma M (2012) Environmental and epidemiological surveillance of Vibrio cholerae in a cholera-endemic region in India with freshwater environs. J Appl Microbiol 112(1):225–237

    Article  CAS  PubMed  Google Scholar 

  • Montville TJ, Matthews KR (2012) Physiology, growth, and inhibition of microbes in foods. Food Microbiol: Fundam Front:1–18

    Google Scholar 

  • Murphy HM, Pintar KD, McBean EA, Thomas MK (2014) A systematic review of waterborne disease burden methodologies from developed countries. J Water Health 12(4):634–655

    Article  CAS  PubMed  Google Scholar 

  • Naumova EN, Jagai JS, Matyas B, DeMaria A, MacNeill IB, Griffiths JK (2007) Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiol Infect 135(2):281–292

    Article  CAS  PubMed  Google Scholar 

  • NICD (2019) National Institute for Communicable Diseases (NICD), South Africa. http://www.nicd.ac.za/wp-content/uploads/2018/08/An-update-on-the-outbreak-of-Listeria-monocytogenes-South-Africa.pdf. Accessed 7 Jan 2019

  • Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C (2012) Campylobacter epidemiology: a descriptive study reviewing 1 million case in England and Wales between 1989 and 2011. BMJ Open 2(4):e001179

    Article  PubMed  PubMed Central  Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC et al (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37. https://doi.org/10.1111/j.1758-2229.2008.00004

    Article  CAS  PubMed  Google Scholar 

  • Pangare G, Idris L (2012) Water and health security. In: Bigas H, Morris T, Sandford B, Adeel Z (eds) The global water crisis: addressing an urgent security issue (Series ed: Axworthy TS)

    Google Scholar 

  • Paterson RRM, Lima N (2011) Further mycotoxin effects from climate change. Food Res Int 44(9):2555–2566

    Article  CAS  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310

    Article  CAS  PubMed  Google Scholar 

  • Pearce W, Holmberg K, Hellsten I, Nerlich B (2014) Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report. PLoS One 9(4):e94785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raffa RB, Eltoukhy NS, Raffa KF (2012) Implications of climate change (global warming) for the healthcare system. J Clin Pharm Ther 37(5):502–504

    Article  CAS  PubMed  Google Scholar 

  • Reidl J, Klose KE (2002) Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 26(2):125–139

    Article  CAS  PubMed  Google Scholar 

  • Sayeed S, Uzal FA, Fisher DJ, Saputo J, Vidal JE, Chen Y et al (2008) Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol 67(1):15–30

    Article  CAS  PubMed  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL et al (2011) Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Schijven J, Bouwknegt M, de Roda Husman AM, Rutjes S, Sudre B, Suk JE, Semenza JC (2013) A decision support tool to compare waterborne and foodborne infection and/or illness risks associated with climate change. Risk Anal 33(12):2154–2167

    Article  PubMed  Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci 104(50):19703–19708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster CJ, Aramini JJ, Ellis AG, Marshall BJ, Robertson WJ, Medeiros DT, Charron DF (2005) Infectious disease outbreaks related to drinking water in Canada, 1974–2001. Can J Public Health 96(4):254–258

    Article  PubMed  PubMed Central  Google Scholar 

  • Springmann M, Mason-D'Croz D, Robinson S, Garnett T, Godfray HCJ, Gollin D et al (2016) Global and regional health effect of future food production under climate change: a modelling study. Lancet 387(10031):1937–1946

    Article  PubMed  Google Scholar 

  • Stenfors Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32(4):579–606

    Article  CAS  PubMed  Google Scholar 

  • Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24(6):549–558

    Article  PubMed  Google Scholar 

  • Tam CC, Rodrigues LC, O'brien SJ, Hajat S (2006) Temperature dependence of reported campylobacter infection in England, 1989–1999. Epidemiol Infect 134(1):119–125

    Article  CAS  PubMed  Google Scholar 

  • Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR et al (2012) Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut 61(1):69–77

    Article  PubMed  Google Scholar 

  • Thomas KM, Charron DF, Waltner-Toews D, Schuster C, Maarouf AR, Holt JD (2006) A role of high impact weather events in waterborne disease outbreaks in Canada, 1975–2001. Int J Environ Health Res 16(03):167–180

    Article  PubMed  Google Scholar 

  • Tirado MC, Clarke R, Jaykus LA, McQuatters-Gollop A, Frank JM (2010) Climate change and food safety: a review. Food Res Int 43(7):1745–1765

    Article  Google Scholar 

  • Van Elsas JD, Semenov AV, Costa R, Trevors JT (2011) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5(2):173

    Article  PubMed  Google Scholar 

  • Vezzulli L, Brettar I, Pezzati E, Reid PC, Colwell RR, Höfle MG, Pruzzo C (2012) Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6(1):21–30

    Article  PubMed  Google Scholar 

  • Walker JT (2018) The influence of climate change on waterborne disease and legionella: a review. Perspect Public Health 138(5):282–286

    Article  CAS  PubMed  Google Scholar 

  • Westrich JR, Ebling AM, Landing WM, Joyner JL, Kemp KM, Griffin DW, Lipp EK (2016) Saharan dust nutrients promote Vibrio bloom formation in marine surface waters. Proc Natl Acad Sci 113(21):5964–5969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2015a) Climate change and health, fact sheet no. 266, September 2015, WHO. http://www.who.int/mediacentre/factsheets/fs266/en/. Accessed 14 Oct 2015

  • WHO (2015b). Waterborne diseases – MDGs-SDGs 2015. https://www.who.int/gho/publications/mdgs-sdgs/MDGs-SDGs2015_chapter5_snapshot_waterborne_diseases.pdf?ua=1

  • Wilkes G, Edge T, Gannon V, Jokinen C, Lyautey E, Medeiros D et al (2009) Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Res 43(8):2209–2223

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2004) World Health Report, Geneva. https://www.who.int/globalchange/publications/climchange.pdf

  • World Health Organisation (2013) The global view of Campylobacteriosis; report of an expert consultation in Utrecht, Netherlands. World Health Organisation, Geneva

    Google Scholar 

  • World Health Organization (2017) Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2018a). Health topics. Foodborne diseases. Accessed 06 Mar 2018. https://www.who.int/health-topics/foodborne-diseases#tab=tab_1

  • World Health Organization (2018b) WHO methods and data sources for global burden of disease estimates 2000–2016. Global Health Estimates Technical Paper WHO/HIS/IER/GHE/2018.4. WHO, Geneva

    Google Scholar 

  • World Health Organization (2019) Disease outbreak news, March 28, 2018. https://www.who.int/csr/don/28-march-2018-listeriosis. Accessed 7 Jan 2019

  • Yamazaki K, Esiobu N (2012) Environmental predictors of pathogenic Vibrios in South Florida coastal waters. Open Epidemiol J 5(1)

    Google Scholar 

  • Zeyad MT, Kumar M, Malik A (2019) Mutagenicity, genotoxicity and oxidative stress induced by pesticide industry wastewater using bacterial and plant bioassays. Biotechnol Rep 24:e00389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anas, M., Sami, M.A., Siddiqui, Z., Khatoon, K., Zeyad, M.T., Malik, A. (2021). Impact of Climate Change on the Incidence and Transfer of Food- and Water-Borne Diseases. In: Lone, S.A., Malik, A. (eds) Microbiomes and the Global Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-33-4508-9_9

Download citation

Publish with us

Policies and ethics