Skip to main content

An Integrator Using Voltage Differencing Transconductance Amplifier

  • Conference paper
  • First Online:
Proceedings of 6th International Conference on Recent Trends in Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 177))

Abstract

This paper presents a voltage differencing transconductance amplifier (VDTA)-based integrator circuit. The VDTA block is simulated using gpdk 180 nm CMOS innovation. The proposed integrator employs single VDTA block and only one capacitor. No resistor is used; thus, the circuit is suitable for IC fabrication. The proposed circuit is simulated using Cadence Virtuoso Tool, and the results are verified mathematically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biolek D, Senani R, Biolková V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4):15–32

    Google Scholar 

  2. Siripruchyanun M, Payakkakul K, Pipatthitikorn P, Satthaphol P (2016) A current mode square/triangular wave generator based on multiple-output VDTA’s. Int Electr Eng Congr 86:152–155. https://doi.org/10.1016/j.procs.2016.05.040

    Article  Google Scholar 

  3. Shankar C, Singh SV (2017) Electronically tunable current mode biquad filter based on single VDTA and grounded passive elements. Int J Eng Technol 9(2):271–279. https://doi.org/10.21817/ijet/2017/v9i1/170902302

    Article  Google Scholar 

  4. Mehra R, Kumar V, Islam A (2018) Floating active inductor based Class-C VCO with 8 digitally tuned sub-bands. Int J Electron Commun 83:1–10. https://doi.org/10.1016/j.aeue.2017.08.018

    Article  Google Scholar 

  5. Yesil A, Kacar F, Kuntman H (2011) New simple CMOS realization of voltage difference transconductance amplifier and its RF filter application. Radioengineering 20(3):632–637

    Google Scholar 

  6. Gupta G, Singh SV, Bhooshan SV (2015) VDTA based electronically tunable voltage- mode and trans-admittance biquad filter. Circ Syst 6:93–102. https://doi.org/10.4236/cs.2015.63010

    Article  Google Scholar 

  7. Yesil A, Kacar F (2013) Electronically tunable resistor less mixed-mode biquad filters. Radioenginnering 22(4):1016–1025

    Google Scholar 

  8. Alaybeyoglu E, Kuntman H (2016) CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog Integr Circ Sig Process 89(3):675–684. https://doi.org/10.1007/s10470-016-0760-y

    Article  Google Scholar 

  9. Prasad D, Ahmad J, Srivastava M (2018) A novel grounded to floating admittance converter with electronic control. Indian J Phys 92(1). https://doi.org/10.1007/s12648-017-1077-0

  10. Chen HP, Hwang YS, Ku YT (2017) A new resistorless and electronic tunable third-order quadrature oscillator with current and voltage outputs. Inst Electron Telecommun Eng Tech Rev 1–13. https://doi.org/10.1080/02564602.2017.1324329

  11. Pandey N, Kumar P, Paul SK (2015) Voltage Differencing Transconductance Amplifier based resistor less and electronically tunable wave active filter. Analog Integr Circ Sig Process 84(1):107–117. https://doi.org/10.1007/s10470-015-0546-7

    Article  Google Scholar 

  12. Pal D, Srinivasulu A, Pal BB, Demosthenous A, Das BN (2009) Current conveyor-based Square/Triangular wave generators with improved linearity. IEEE Trans Instrum Meas 58(7):2174–2180. https://doi.org/10.1109/TIM.2008.2006729

    Article  Google Scholar 

  13. Srinivasulu A (2012) Current conveyor based relaxation oscillator with tunable grounded resistor/capacitor. Int J Des Anal Tools Circ Syst (Hong-Kong) 3(2):1–7

    Google Scholar 

  14. Srinivasulu A (2011) A novel current conveyor based-Schmitt trigger and its application as a relaxation oscillator. Int J Circ Theor Appl 39(6):679–686. https://doi.org/10.1002/cta.669

    Article  Google Scholar 

  15. Pal D, Srinivasulu A, Goswami M (2009) Novel current-mode waveform generator with independent frequency and amplitude control. In: Proceedings of the IEEE international symposium on circuits and systems, pp 2946–2949. https://doi.org/10.1109/ISCAS.2009.5118420

  16. Bhasker DR, Tripati MP, Senani R (1993) A class of three OTA-two capacitor oscillators with non-interacting controls. Int J Electron 74(03):459–463. https://doi.org/10.1080/00207219308925849

    Article  Google Scholar 

  17. Chung WS, Kim H, Cha HW, Kim HJ (2005) Triangular/square wave generator with independently controllable frequency and amplitude. IEEE Trans Instrum Meas 54(1):105–109. https://doi.org/10.1109/TIM.2004.840238

    Article  Google Scholar 

  18. Srinivasulu A, Shaker PC (2014) Grounded resistance/capacitance-controlled sinusoidal oscillators using operational transresistance amplifier. WSEAS Trans Circ Syst 13:145–152

    Google Scholar 

  19. Shaker PC, Srinivasulu A (2014) Quadrature oscillator using operational transresistance amplifier. In: Proceedings of international conference on applied electronics, pp 117–120. https://doi.org/10.1109/AE.2014.7011681

  20. Lo YK, Chien HC (2007) Switch controllable OTRA based square/triangular waveform generator. IEEE Trans Circ Syst-II 54(12):1110–1114. https://doi.org/10.1109/TCSII.2007.905879

    Article  Google Scholar 

  21. Linitha R, Srinivasulu A, Reddy VV (2015) A Schmitt trigger based on DDCCTA without any passive components. In: Proceedings of IEEE international conference on communications and signal processing, pp 1695–1698. https://doi.org/10.1109/ICCSP.2015.7322808

  22. Jaikla W, Siripruchyanum M, Bajer J, Biolek D (2008) A simple current-mode quadrature oscillator using CDTA. Radioengineering 17(4):33–40

    Google Scholar 

  23. Tangsrirat W (2011) Synthesis of current differencing transconductance amplifier –based current limiters and its applications. Int J Circ Syst Comput 20:185–206

    Article  Google Scholar 

  24. Kumbun J, Siripruchyanun M (2010) MO-CTTA-based electronically controlled current mode square/triangular wavegenerator. In: Proceedings of international conference on technical education, pp 158–162

    Google Scholar 

  25. Sedra A, Smith KC (1998) Microelectronic Circuits, 5th edn. Oxford University Press, London, UK, pp 105–112

    Google Scholar 

  26. Minaei S (2004) Dual-input current-mode integrator and differentiator using single DVCC and grounded passive elements. In: Proceedings of the 12th IEEE mediterranean electro technical conference, vol 1, pp 123–126. https://doi.org/10.1109/MELCON.2004.1346788

  27. Nagaria RK, Goswami A, Venkateswaran P, Sanyal SK, Nandi R (2003) Voltage controlled integrators/differentiators using current feedback amplifier. In: 2003 International symposium on signals, circuits and systems. SCS 2003, Iasi, Romania, vol 2, pp 573–576. https://doi.org/10.1109/SCS.2003.1227117

  28. Patranabis D, Ghosh DK (1984) Integrators and differentiators with current conveyors. IEEE Trans Circ Syst 31(6):567–569. https://doi.org/10.1109/TCS.1984.1085535

    Article  Google Scholar 

  29. Lee J-Y, Tsao H-W (1992) True RC integrators based on current conveyors with tunable time constants using active control and modified loop technique. IEEE Trans Instrum Meas 41(5):709–714. https://doi.org/10.1109/19.177348

    Article  Google Scholar 

  30. Chiu W, Tsay J-H, Liu S-I, Tsao H-W, Chen J-J (1995) Single-capacitor MOSFET-C integrator using OTRA. Electron Lett 31(21):1796–1797

    Article  Google Scholar 

  31. Linitha R, Srinivasulu A, Reddy VV (2017) An integrator circuit using differential difference current conveyor transconductance amplifier. In: Proceedings of IEEE international conference on signal processing, communications and networking, pp 1–4. https://doi.org/10.1109/ICSCN.2017.8085420

  32. Santhoshini KM, Sarada M, Srinivasulu A (2019) An integrator circuit using voltage difference transconductance amplifier. Solid State Electron Lett 1(1):10–14. https://doi.org/10.1016/j.ssel.2018.08.001

    Article  Google Scholar 

  33. Fragoulis N, Haritantisl I, Constantinides AG (2000) Active filter synthesis based on tunable log-domain lossy integrators. In: Proceedings of IEEE international symposium on circuits and systems, pp 409–412. https://doi.org/10.1109/ISCAS.2000.857458

  34. Tsukutani T, Kinugasa Y, Sumi Y, Higashimura M, Fukui Y (2003) Novel current-mode active-only biquad with loss-less and lossy integrators. Int J Electron 90(10):627–633. https://doi.org/10.1080/0014184032000159336

    Article  Google Scholar 

  35. Lovchakov VI, Shopin SA (2016) Solution set of time optimal control problem for four series connected integrators. In: Proceedings of international Siberian conference on control and communication, pp 1–4. https://doi.org/10.1109/SIBCON.2016.7491693

  36. Xin Z, Zhao R, Wang X, Loh PC, Blaabjerg F (2016) Four new applications of second-order generalized integrator quadrature signal generator In: Proceedings of IEEE applied power electronics conference and exposition, pp 2207–2214. https://doi.org/10.1109/APEC.2016.7468173

  37. Sanyal SK, Sarker UC, Nandi R (1990) Increased time-constant dual-input integrators. IEEE Trans Instrum Measur 39:672–673. https://doi.org/10.1109/19.57257

    Article  Google Scholar 

  38. Liu S-I, Hwang Y-S (1994) Dual-input differentiators and integrators with tunable time constants using Current Conveyors. IEEE Trans Instrum Meas 43(4):650–654. https://doi.org/10.1109/19.310164

    Article  Google Scholar 

  39. Arbel AF, Goldminz L (1992) Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr Circ Sig Process 2(3):243–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avireni Srinivasulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumawat, M., Mathur, A., Sharma, J., Srinivasulu, A. (2021). An Integrator Using Voltage Differencing Transconductance Amplifier. In: Mahapatra, R.P., Panigrahi, B.K., Kaushik, B.K., Roy, S. (eds) Proceedings of 6th International Conference on Recent Trends in Computing. Lecture Notes in Networks and Systems, vol 177. Springer, Singapore. https://doi.org/10.1007/978-981-33-4501-0_1

Download citation

Publish with us

Policies and ethics