Skip to main content

Potential Applications of Cationic Lipids in Nucleic Acid-Based Therapeutic Delivery System

  • Chapter
  • First Online:
Nanocarriers: Drug Delivery System

Abstract

Gene therapy can prevent or cure diverse pathological conditions associated with defects in gene expression. Three main delivery systems used to deliver genes to target cells include mechanical, biological, and chemical method of DNA transfection. However viral vectors were the most studied and reported; associated side effects and limitations of viral vectors (high risk of mutagenicity, immunogenicity, low production yield, limited gene-loading capacity, and poor host range) have led to the development of nonviral vectors. On the light of the above background, cationic lipids may be alternatively used as promising carriers for nucleic acid delivery. With certain advantages over viral vectors, such as low immunogenicity, high loading capacity, broad range of host cell, being cheap, and easy reproduction, cationic lipid will be the choice for future gene delivery system. This chapter provides an overview of recent developments employed for in vitro and in vivo delivery of therapeutically important nucleic acids using different types of cationic lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida MLS, Grehn L, Ragnarsson U (1988) Selective protection of polyamines: synthesis of model compounds and spermidine derivatives. J Chem Soc Perkin Trans 1(7):1905–1911

    Article  Google Scholar 

  • Balazs DA, Godbey WT (2011) Liposomes for use in gene delivery. J Drug Deliv 2011:1–12

    Article  CAS  Google Scholar 

  • Behr JP (1986) DNA strongly binds to micelles and vesicles containing lipopolyamines or lipointercalants. Tetrahedron Lett 27(48):5861–5864

    Article  CAS  Google Scholar 

  • Bennett CF, Chiang MY, Chan H et al (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 41(6):1023

    CAS  PubMed  Google Scholar 

  • Crook K, Stevenson BJ, Dubouchet M et al (1998) Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum. Gene Ther 5(1):137–143

    Article  CAS  PubMed  Google Scholar 

  • Darquet AM, Rangara R, Kreiss P et al (1999) Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther 6(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Das J, Han JW, Choi YJ et al (2016) Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism. Sci Rep 6(1):29197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duzgunes N, Goldstein JA, Friend DS et al (1989) Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles. Biochemistry 28(23):9179–9184

    Article  CAS  PubMed  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2004) Gene therapy clinical trials worldwide 1989-2004—an overview. J Gene Med 6(6):597–602

    Article  PubMed  Google Scholar 

  • Even-Chen S, Barenholz Y (2000) DOTAP cationic liposomes prefer relaxed over supercoiled plasmids. Biochim Biophys Acta 1509(1):176–188

    Article  CAS  PubMed  Google Scholar 

  • Felgner PL, Gadek TR, Holm M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friend DS, Papahadjopoulos D, Debs RJ (1996) Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta 1278(1):41–50

    Article  PubMed  Google Scholar 

  • Galanis E, Hersh EM, Stopeck AT et al (1999) Immunotherapy of advanced malignancy by direct gene transfer of an interleukin-2 DNA/DMRIE/DOPE lipid complex: phase I/II experience. J Clin Oncol 17(10):3313–3323

    Article  CAS  PubMed  Google Scholar 

  • Ginn SL, Amaya AK, Alexander IE et al (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20(5):e3015

    Article  PubMed  Google Scholar 

  • Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45(7):971–979

    Article  CAS  PubMed  Google Scholar 

  • Hoffman DMJ, Figlin RA (2000) Intratumoral interleukin 2 for renal-cell carcinoma by direct gene transfer of a plasmid DNA/DMRIE/DOPE lipid complex. World J Urol 18(2):152–156

    Article  CAS  PubMed  Google Scholar 

  • Hofland HE, Shephard L, Sullivan SM (1996) Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci 93(14):7305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofland HEJ, Nagy D, Liu JJ et al (1997) In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex. Pharm Res 14(6):742–749

    Article  CAS  PubMed  Google Scholar 

  • Hong YS, Laks H, Cui G et al (2002) Localized immunosuppression in the cardiac allograft induced by a new liposome-mediated IL-10 gene therapy. J Heart Lung Transplant 21(11):1188–1200

    Article  PubMed  Google Scholar 

  • In KH, Asano K, Beier D et al (1997) Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription. J Clin Invest 99(5):1130–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen DK, Jensen LB, Koocheki S et al (2012) Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J Control Release 157(1):141–148

    Article  CAS  PubMed  Google Scholar 

  • Jinturkar KA, Rathi MN, Misra A (2011) Gene delivery using physical methods. In: Misra A (ed) Challenges in delivery of therapeutic genomics and proteomics. Elsevier, London, pp 83–126

    Chapter  Google Scholar 

  • Kamihira M, Nishijima KI, Iijima S (2004) Transgenic birds for the production of recombinant proteins. In: Kobayashi T (ed) Recent progress of biochemical and biomedical engineering in Japan II. Springer, Berlin, pp 171–189

    Chapter  Google Scholar 

  • Kawakami S, Harada A, Sakanaka K et al (2004) In vivo gene transfection via intravitreal injection of cationic liposome/plasmid DNA complexes in rabbits. Int J Pharm 278(2):255–262

    Article  CAS  PubMed  Google Scholar 

  • Kreiss P, Mailhe P, Scherman D et al (1999) Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 27(19):3792–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D (2020) The human genome and molecular medicine. In: Kumar D (ed) Clinical molecular medicine. Academic Press, London, pp 3–16

    Chapter  Google Scholar 

  • Kunitake T, Okahata Y, Tamaki K, Kumamaru F, Takayanagi M (1977) Formation of the bilayer membrane from a series of quaternary ammonium salts. Chem Lett 6(4):387–390

    Article  Google Scholar 

  • Lalani J, Misra A (2011) Gene delivery using chemical methods. In: Misra A (ed) Challenges in delivery of therapeutic genomics and proteomics. Elsevier, London, pp 127–206

    Chapter  Google Scholar 

  • Lampela P, Räisänen J, Männistö PT et al (2002) The use of low-molecular-weight PEIs as gene carriers in the monkey fibroblastoma and rabbit smooth muscle cell cultures. J Gene Med 4(2):205–214

    Article  PubMed  Google Scholar 

  • Lampela P, Elomaa M, Ruponen M et al (2003) Different synergistic roles of small polyethylenimine and Dosper in gene delivery. J Control Release 88(1):173–183

    Article  CAS  PubMed  Google Scholar 

  • Lehn JM, Lehn P, Vigneron JP (2000) Compounds related to the amidinium family, pharmaceutical compositions containing same, and uses thereof. US Patent 6143729, 7 Nov 2011

    Google Scholar 

  • Liu F, Qi H, Huang L et al (1997) Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther 4(6):517–523

    Article  CAS  PubMed  Google Scholar 

  • Luton D, Oudrhiri N, de Lagausie P et al (2004) Gene transfection into fetal sheep airways in utero using guanidinium-cholesterol cationic lipids. J Gene Med 6(3):328–336

    Article  CAS  PubMed  Google Scholar 

  • Malone RW, Felgner PL, Verma IM (1989) Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci 86(16):6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margineanu DG (1987) Equilibrium and non-equilibrium approaches in biomembrane thermodynamics. Arch Physiol Biochem 95(4):381–422

    CAS  Google Scholar 

  • Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286(5448):2244–2245

    Article  CAS  PubMed  Google Scholar 

  • Mashal M, Attia N, Puras G et al (2017) Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on DOTMA and polysorbate 60. J Control Release 254:55–64

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Kishikawa R, Kurosaki T et al (2008) Hybrid vector including polyethylenimine and cationic lipid, DOTMA, for gene delivery. Int J Pharm 363(1):58–65

    Article  CAS  PubMed  Google Scholar 

  • McCluskie MJ, Chu Y, Xia JL et al (1998) Direct gene transfer to the respiratory tract of mice with pure plasmid and lipid-formulated DNA. Antisense Nucleic Acid Drug Dev 8(5):401–414

    Article  CAS  PubMed  Google Scholar 

  • Merlin JL, Dolivet G, Dubessy C et al (2001) Improvement of nonviral p53 gene transfer in human carcinoma cells using glucosylated polyethylenimine derivatives. Cancer Gene Ther 8(3):203–210

    Article  CAS  PubMed  Google Scholar 

  • Mizuarai S, Ono KI, You J et al (2001) Protamine-modified DDAB lipid vesicles promote gene transfer in the presence of Serum1. J Biochem 129(1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Moret I, Esteban Peris J, Guillem VM et al (2001) Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. J Control Release 76(1):169–181

    Article  CAS  PubMed  Google Scholar 

  • Norman JA, Hobart P, Manthorpe M et al (1997) Development of improved vectors for DNA-based immunization and other gene therapy applications. Vaccine 15(8):801–803

    Article  CAS  PubMed  Google Scholar 

  • Ohama Y, Heike Y, Sugahara T et al (2005) Gene transfection into HeLa cells by vesicles containing cationic peptide lipid. Biosci Biotechnol Biochem 69(8):1453–1458

    Article  CAS  PubMed  Google Scholar 

  • Ott G, Singh M, Kazzaz J et al (2002) A cationic sub-micron emulsion (MF59/DOTAP) is an effective delivery system for DNA vaccines. J Control Release 79(1–3):1–5

    Article  CAS  PubMed  Google Scholar 

  • Pitard B, Oudrhiri N, Vigneron JP et al (1999) Structural characteristics of supramolecular assemblies formed by guanidinium-cholesterol reagents for gene transfection. Proc Natl Acad Sci 96(6):2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porteous DJ, Dorin JR, McLachlan G et al (1997) Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4(3):210–218

    Article  CAS  PubMed  Google Scholar 

  • Pun SH, Hoffman AS (2013) B.8 - Nucleic acid delivery. In: Ratner BD, Hoffman AS, Schoen FJ et al (eds) Biomaterials science, 3rd edn. Academic Press, Waltham, MA, pp 1047–1054

    Chapter  Google Scholar 

  • Regelin AE, Fankhaenel S, Gürtesch L et al (2000) Biophysical and lipofection studies of DOTAP analogs. Biochim Biophys Acta 1464(1):151–164

    Article  CAS  PubMed  Google Scholar 

  • Remaut K, Sanders NN, Fayazpour F et al (2006) Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. J Control Release 115(3):335–343

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Song YK, Zhang G et al (2000) Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther 7(9):764–768

    Article  CAS  PubMed  Google Scholar 

  • Rose JK, Buonocore L, Whitt MA (1991) A new cationic liposome reagent mediating nearly quantitative transfection of animal cells. BioTechniques 10(4):520–525

    CAS  PubMed  Google Scholar 

  • Rosenberg SA, Spiess P, Lafreniere RJS (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233(4770):1318–1321

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Perlaky L, Wang H et al (1994) Pharmacokinetics, tissue distribution, and stability of antisense oligodeoxynucleotide phosphorothioate ISIS 3466 in mice. Oncol Res 6(6):243–249

    CAS  PubMed  Google Scholar 

  • Sakurai F, Nishioka T, Saito H et al (2001) Interaction between DNA–cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther 8(9):677–686

    Article  CAS  PubMed  Google Scholar 

  • Schäfer J, Höbel S, Bakowsky U et al (2010) Liposome–polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials 31(26):6892–6900

    Article  PubMed  CAS  Google Scholar 

  • S̆misterová J, Wagenaar A, Stuart MC et al (2001) Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery. J Biol Chem 276(50):47615–47622

    Article  PubMed  Google Scholar 

  • Souza S, Rosseels V, Denis O et al (2002) Improved tuberculosis DNA vaccines by formulation in cationic lipids. Infect Immun 70(7):3681–3688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephan DJ, Yang ZY, San H et al (1996) A new cationic liposome DNA complex enhances the efficiency of arterial gene transfer in vivo. Hum Gene Ther 7(15):1803–1812

    Article  CAS  PubMed  Google Scholar 

  • Templeton NS, Lasic DD, Frederik PM et al (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15(7):647–652

    Article  CAS  PubMed  Google Scholar 

  • Todd R, McBride J, Tsujl T et al (1995) Deleted in oral cancer-1 (doc-l), a novel oral tumor suppressor gene. FASEB J 9(13):1362–1370

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto H, Boado RJ, Pardridge WM (1997) Site-directed deletion of a 10-nucleotide domain of the 3′-untranslated region of the GLUT1 glucose transporter mRNA eliminates cytosolic protein binding in human brain tumors and induction of reporter gene expression. J Neurochem 68(6):2587–2592

    Article  CAS  PubMed  Google Scholar 

  • Vigneron JP, Oudrhiri N, Fauquet M et al (1996) Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukaryotic cells. Proc Natl Acad Sci 93(18):9682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler CJ (2013) Complex cationic lipids having quaternary nitrogens therein. US Patent 8,541,628, 24 Sept 2013

    Google Scholar 

  • Wheeler CJ, Felgner PL, Tsai YJ et al (1996) A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung. Proc Natl Acad Sci 93(21):11454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollenberg B, Kastenbauer D, Mundl H et al (1999) Gene therapy—phase I trial for primary untreated head and neck squamous cell cancer (HNSCC) UICC stage II-IV with a single intratumoral injection of hIL-2 plasmids formulated in DOTMA/Chol. Hum Gene Ther 10(1):141–147

    Article  CAS  PubMed  Google Scholar 

  • Zhi D, Zhang S, Cui S et al (2013) The headgroup evolution of cationic lipids for gene delivery. Bioconjug Chem 24(4):487–519

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Mahato RI (2010) Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv 7(10):1209–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kardani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kardani, S., Vaishnav, D. (2021). Potential Applications of Cationic Lipids in Nucleic Acid-Based Therapeutic Delivery System. In: Shah, N. (eds) Nanocarriers: Drug Delivery System. Springer, Singapore. https://doi.org/10.1007/978-981-33-4497-6_13

Download citation

Publish with us

Policies and ethics