Skip to main content

Optomechanical Microcavity Packaging

  • Chapter
  • First Online:
Experimental Research of Cavity Optomechanics

Part of the book series: Springer Theses ((Springer Theses))

  • 394 Accesses

Abstract

For the quantum optomechanics research, the mechanical oscillator needs to be cooled to ground state in a cryostat or vacuum chamber, which can also improve the Q factors of the mechanical modes. However, stable 3D optical stages are required to hold the microresonator-taper coupling system to keep and adjust the air gap between them and, thus, give rise to experiment difficulties in a relatively small vacuum chamber or cryostat. To address this issue, an efficient method to package a coupled silica microsphere and tapered fiber system is proposed and demonstrated experimentally. For the purpose of optomechanical studies, high-quality-factor optical and mechanical modes are maintained after the packaging process. For the mounted microsphere, the coupling system is more stable and compact and, thus, is beneficial for future studies and applications based on optomechanical interactions. Especially, the packaged optomechanical system, which is tested in a vacuum chamber, paves the way toward quantum optomechanics research in cryostat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zou CL, Shu FJ, Sun FW, Gong ZJ, Han ZF, Guo GC (2013) Opt Express 21(8):9982

    Google Scholar 

  2. MacDonald A, Popowich G, Hauer B, Kim P, Fredrick A, Rojas X, Doolin P, Davis J (2015) Rev Sci Instrum 86(1):013107

    Google Scholar 

  3. Yan YZ, Zou CL, Yan SB, Sun FW, Ji Z, Liu J, Zhang YG, Wang L, Xue CY, Zhang WD et al (2011) Opt Express 19(7):5753

    Google Scholar 

  4. Wang P, Ding M, Lee T, Murugan GS, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G (2013) Appl Phys Lett 102(13):131110

    Google Scholar 

  5. Wang P, Ding M, Murugan GS, Bo L, Guan C, Semenova Y, Wu Q, Farrell G, Brambilla G (2014) Opt Lett 39(17):5208

    Google Scholar 

  6. Vanier F, Peter YA, Rochette M (2014) Opt Express 22(23):28731

    Google Scholar 

  7. Dong Y, Wang K, Jin X (2015) Appl Opt 54(2):277

    Google Scholar 

  8. Monifi F, Ozdemir SK, Friedlein J, Yang L (2013) IEEE Photonics Technol Lett 25(15):1458

    Google Scholar 

  9. Park YS (2009) Radiation pressure cooling of a silica optomechanical resonator. PhD thesis

    Google Scholar 

  10. Chen Y, Shen Z, Xiong X, Dong CH, Zou CL, Guo GC (2016) New J Phys 18(6):063031

    Google Scholar 

  11. Carmon T, Yang L, Vahala KJ (2004) Opt Express 12(20):4742

    Google Scholar 

  12. Kippenberg T, Spillane S, Vahala K (2004) Phys Rev Lett 93(8):083904

    Google Scholar 

  13. Kippenberg TJ, Rokhsari H, Carmon T, Scherer A, Vahala KJ (2005) Phys Rev Lett 95(3):033901

    Google Scholar 

  14. Riviere R, Arcizet O, Schliesser A, Kippenberg TJ (2013) Rev Sci Instrum 84(4):043108

    Google Scholar 

  15. Anetsberger G, Riviere R, Schliesser A, Arcizet O, Kippenberg TJ (2008) Nat Photonics 2(10):627

    Google Scholar 

  16. Kippenberg TJ, Vahala KJ (2008) Science 321(5893):1172

    Google Scholar 

  17. Knight JC, Cheung G, Jacques F, Birks T (1997) Opt Lett 22(15):1129

    Google Scholar 

  18. Zou CL, Yang Y, Dong CH, Xiao YF, Wu XW, Han ZF, Guo GC (2008) JOSA B 25(11):1895

    Google Scholar 

  19. Little BE, Laine JP, Haus HA (1999) J Lightwave Technol 17(4):704

    Google Scholar 

  20. Dong C, Zou C, Cui J, Yang Y, Han Z, Guo G (2009) Chin Opt Lett 7(4):299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Shen .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, Z. (2021). Optomechanical Microcavity Packaging. In: Experimental Research of Cavity Optomechanics. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-33-4458-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4458-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4457-0

  • Online ISBN: 978-981-33-4458-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics