Skip to main content

Acute Cardiac Diseases: Evaluation with Computed Tomography and Magnetic Resonance Imaging

  • Chapter
  • First Online:
Emergency Chest Radiology
  • 596 Accesses

Abstract

Recent trials have shown that coronary computed tomography angiography (CCTA) reliably excludes acute coronary syndrome in patients presenting at the emergency department. Cardiac magnetic resonance (CMR) imaging enables accurate assessment of acute myocardial infarction, acute myocarditis, and pericarditis. In this review, imaging findings of acute coronary syndrome, acute myocarditis and pericarditis, cardiogenic sources of systemic embolism, cardiac trauma, complications of cardiac surgery and transcatheter aortic valve implantation, coronary arteritis, and coronary anomalies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pannu HK, Alvarez W Jr, Fishman EK. Beta-blockers for cardiac CT: a primer for the radiologist. AJR Am J Roentgenol. 2006;186(6 Suppl 2):S341–5.

    Article  PubMed  Google Scholar 

  2. Vardhanabhuti V, Nicol E, Morgan-Hughes G, et al. Recommendations for accurate CT diagnosis of suspected acute aortic syndrome (AAS): on behalf of the British Society of Cardiovascular Imaging (BSCI)/British Society of Cardiovascular CT (BSCCT). Br J Radiol. 2016;89(1061):20150705.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shin N, Kim SM, Choe YH. Protocol using wide-detector CT with single contrast injection for the aorta and coronary artery: variable helical pitch versus volume scan following helical scan. Int J Cardiovasc Imaging. 2019;35(10):1935–42.

    Article  PubMed  Google Scholar 

  4. Raff GL, Hoffmann U, Udelson JE. Trials of imaging use in the Emergency Department for acute chest pain. JACC Cardiovasc Imaging. 2017;10(3):338–49.

    Article  PubMed  Google Scholar 

  5. Linde JJ, Kelbæk H, Hansen TF, et al. Coronary CT angiography in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2020;75(5):453–63.

    Article  PubMed  Google Scholar 

  6. Min JH, Kim SM, Lee S, Choi JH, Chang SA, Choe YH. Diagnostic performance of algorithm for computer-assisted detection of significant coronary artery disease in patients with acute chest pain: comparison with invasive coronary angiography. AJR Am J Roentgenol. 2014;202(4):730–7.

    Article  PubMed  Google Scholar 

  7. Goldstein JA, Chinnaiyan KM, Abidov A, et al. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol. 2011;58(14):1414–22.

    Article  PubMed  Google Scholar 

  8. Durand E, Bauer F, Mansencal N, et al. Head-to-head comparison of the diagnostic performance of coronary computed tomography angiography and dobutamine-stress echocardiography in the evaluation of acute chest pain with normal ECG findings and negative troponin tests: a prospective multicenter study. Int J Cardiol. 2017;241:463–9.

    Google Scholar 

  9. Litt HI, Gatsonis C, Snyder B, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366(15):1393–403.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffmann U, Truong QA, Schoenfeld DA, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367(4):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Linde JJ, Hove JD, Sorgaard M, et al. Long-term clinical impact of coronary CT angiography in patients with recent acute-onset chest pain: the randomized controlled CATCH trial. JACC Cardiovasc Imaging. 2015;8(12):1404–13.

    Article  PubMed  Google Scholar 

  12. Truong QA, Hayden D, Woodard PK, et al. Sex differences in the effectiveness of early coronary computed tomographic angiography compared with standard emergency department evaluation for acute chest pain: the rule-out myocardial infarction with computer-assisted tomography (ROMICAT)-II trial. Circulation. 2013;127(25):2494–502.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Truong QA, Schulman-Marcus J, Zakroysky P, et al. Coronary CT angiography versus standard emergency department evaluation for acute chest pain and diabetic patients: is there benefit with early coronary CT angiography? Results of the randomized comparative effectiveness ROMICAT II trial. J Am Heart Assoc. 2016;5(3):e003137.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bittner DO, Mayrhofer T, Bamberg F, et al. Impact of coronary calcification on clinical management in patients with acute chest pain. Circ Cardiovasc Imaging. 2017;10(5):e005893.

    Google Scholar 

  15. Hinzpeter R, Higashigaito K, Morsbach F, et al. Coronary artery calcium scoring for ruling-out acute coronary syndrome in chest pain CT. Am J Emerg Med. 2017;35(10):1565–7.

    Article  PubMed  Google Scholar 

  16. Dedic A, Lubbers MM, Schaap J, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol. 2016;67(1):16–26.

    Article  PubMed  Google Scholar 

  17. Ferencik M, Liu T, Mayrhofer T, et al. hs-Troponin I followed by CT angiography improves acute coronary syndrome risk stratification accuracy and work-up in acute chest pain patients: results from ROMICAT II trial. JACC Cardiovasc Imaging. 2015;8(11):1272–81.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Puchner SB, Liu T, Mayrhofer T, et al. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. J Am Coll Cardiol. 2014;64(7):684–92.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahmadi A, Argulian E, Leipsic J, Newby DE, Narula J. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74(12):1608–17.

    Article  PubMed  Google Scholar 

  20. Hedgire S, Baliyan V, Zucker EJ, et al. Perivascular epicardial fat stranding at coronary CT angiography: a marker of acute plaque rupture and spontaneous coronary artery dissection. Radiology. 2018;287(3):808–15.

    Article  PubMed  Google Scholar 

  21. Nakayama N, Kaikita K, Fukunaga T, et al. Clinical features and prognosis of patients with coronary spasm-induced non-ST-segment elevation acute coronary syndrome. J Am Heart Assoc. 2014;3(3):e000795.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kang EJ, Kim MH, De Jin C, et al. Noninvasive detection of coronary vasospastic angina using a double-acquisition coronary CT angiography protocol in the presence and absence of an intravenous nitrate: a pilot study. Eur Radiol. 2017;27(3):1136–47.

    Article  PubMed  Google Scholar 

  23. Ohba K, Sugiyama S, Sumida H, et al. Microvascular coronary artery spasm presents distinctive clinical features with endothelial dysfunction as nonobstructive coronary artery disease. J Am Heart Assoc. 2012;1(5):e002485.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ohyama K, Matsumoto Y, Takanami K, et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J Am Coll Cardiol. 2018;71(4):414–25.

    Article  PubMed  Google Scholar 

  25. Kim HS, Kim SM, Cha MJ, et al. Triple rule-out CT angiography protocol with restricting field of view for detection of pulmonary thromboembolism and aortic dissection in emergency department patients: simulation of modified CT protocol for reducing radiation dose. Acta Radiol. 2017;58(5):521–7.

    Article  PubMed  Google Scholar 

  26. Park J, Kim J, Kim K. Limiting scan range of cardiac CT and the chance of missed acute aortic syndrome. Am J Emerg Med. 2016;34(10):2007–10.

    Article  PubMed  Google Scholar 

  27. Thomas DM, Larson CW, Cheezum MK, et al. Rest-only myocardial CT perfusion in acute chest pain. South Med J. 2015;108(11):688–94.

    Article  PubMed  Google Scholar 

  28. Hayes SN, Kim ESH, Saw J, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation. 2018;137(19):e523–57.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Adlam D, Alfonso F, Maas A, Vrints C. European Society of Cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J. 2018;39(36):3353–68.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hecht HS, Narula J, Fearon WF. Fractional flow reserve and coronary computed tomographic angiography: a review and critical analysis. Circ Res. 2016;119(2):300–16.

    Article  CAS  PubMed  Google Scholar 

  31. Abanador-Kamper N, Kamper L, Castello-Boerrigter L, Haage P, Seyfarth M. MRI findings in patients with acute coronary syndrome and unobstructed coronary arteries. Diagn Interv Radiol. 2019;25(1):28–34.

    Article  PubMed  Google Scholar 

  32. Chu G, Zhang G, Zhu M, Zhang Z, Wu Y, Zhang H. Acute one-stop cardiovascular magnetic resonance imaging for differential diagnosis in patients with acute coronary syndrome and unobstructed coronary arteries. Med Princ Pract. 2015;24(4):325–31.

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Filippo M, Capasso R. Coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) imaging in the assessment of patients presenting with chest pain suspected for acute coronary syndrome. Ann Transl Med. 2016;4(13):255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kwong RY, Schussheim AE, Rekhraj S, et al. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation. 2003;107(4):531–7.

    Article  PubMed  Google Scholar 

  35. Saremi F. Cardiac MR imaging in acute coronary syndrome: application and image interpretation. Radiology. 2017;282(1):17–32.

    Article  PubMed  Google Scholar 

  36. Adler Y, Charron P, Imazio M, et al. ESC Guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921–64.

    Article  PubMed  Google Scholar 

  37. Fadl SA, Nasrullah A, Harris A, Edwards R, Kicska G. Comprehensive review of pericardial diseases using different imaging modalities. Int J Cardiovasc Imaging. 2020;36(5):947–69.

    Article  PubMed  Google Scholar 

  38. Restrepo CS, Lemos DF, Lemos JA, et al. Imaging findings in cardiac tamponade with emphasis on CT. Radiographics. 2007;27(6):1595–610.

    Article  PubMed  Google Scholar 

  39. Friedrich MG, Marcotte F. Cardiac magnetic resonance assessment of myocarditis. Circ Cardiovasc Imaging. 2013;6(5):833–9.

    Article  PubMed  Google Scholar 

  40. Chen W, Jeudy J. Assessment of myocarditis: cardiac MR, PET/CT, or PET/MR? Curr Cardiol Rep. 2019;21(8):76.

    Article  PubMed  Google Scholar 

  41. Gannon MP, Schaub E, Grines CL, Saba SG. State of the art: evaluation and prognostication of myocarditis using cardiac MRI. J Magn Reson Imaging. 2019;49(7):e122–31.

    Article  PubMed  Google Scholar 

  42. Wheen P, Armstrong R, Daly CA. Recent advances in T1 and T2 mapping in the assessment of fulminant myocarditis by cardiac magnetic resonance. Curr Cardiol Rep. 2020;22(7):47.

    Article  CAS  PubMed  Google Scholar 

  43. Baessler B, Luecke C, Lurz J, et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology. 2019;292(3):608–17.

    Article  PubMed  Google Scholar 

  44. Hulten E, Agarwal V, Cahill M, et al. Presence of late gadolinium enhancement by cardiac magnetic resonance among patients with suspected cardiac sarcoidosis is associated with adverse cardiovascular prognosis: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2016;9(9):e005001.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hur J, Choi BW. Cardiac CT imaging for ischemic stroke: current and evolving clinical applications. Radiology. 2017;283(1):14–28.

    Article  PubMed  Google Scholar 

  46. Smietana J, Plitt A, Halperin JL. Thromboembolism in the absence of atrial fibrillation. Am J Cardiol. 2019;124(2):303–11.

    Article  PubMed  Google Scholar 

  47. Niku AD, Shiota T, Siegel RJ, Rader F. Prevalence and resolution of left atrial thrombus in patients with nonvalvular atrial fibrillation and flutter with oral anticoagulation. Am J Cardiol. 2019;123(1):63–8.

    Article  PubMed  Google Scholar 

  48. Pathan F, Hecht H, Narula J, Marwick TH. Roles of transesophageal echocardiography and cardiac computed tomography for evaluation of left atrial thrombus and associated pathology: a review and critical analysis. JACC Cardiovasc Imaging. 2018;11(4):616–27.

    Article  PubMed  Google Scholar 

  49. Inoue T, Suematsu Y. Poor enhancement pattern of left atrial appendage in cardiac computed tomography is associated with stroke in persistent atrial fibrillation patients. J Thorac Dis. 2019;11(8):3315–24.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bilchick KC, Mealor A, Gonzalez J, et al. Effectiveness of integrating delayed computed tomography angiography imaging for left atrial appendage thrombus exclusion into the care of patients undergoing ablation of atrial fibrillation. Heart Rhythm. 2016;13(1):12–9.

    Article  PubMed  Google Scholar 

  51. Crimm HA, Taylor JR, Fogarty BT, Villines TC. Prone patient positioning to exclude left atrial appendage thrombus using cardiac CT. J Cardiovasc Comput Tomogr. 2018;12(2):176–8.

    Article  PubMed  Google Scholar 

  52. Teunissen C, Habets J, Velthuis BK, Cramer MJ, Loh P. Double-contrast, single-phase computed tomography angiography for ruling out left atrial appendage thrombus prior to atrial fibrillation ablation. Int J Cardiovasc Imaging. 2017;33(1):121–8.

    Article  PubMed  Google Scholar 

  53. Hur J, Kim YJ, Lee HJ, et al. Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology. 2012;263(3):688–95.

    Article  PubMed  Google Scholar 

  54. Kim EY, Choe YH, Sung K, Park SW, Kim JH, Ko YH. Multidetector CT and MR imaging of cardiac tumors. Korean J Radiol. 2009;10(2):164–75.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Koo HJ, Yang DH, Kang JW, et al. Demonstration of infective endocarditis by cardiac CT and transoesophageal echocardiography: comparison with intra-operative findings. Eur Heart J Cardiovasc Imaging. 2018;19(2):199–207.

    Article  PubMed  Google Scholar 

  56. Windecker S, Stortecky S, Meier B. Paradoxical embolism. J Am Coll Cardiol. 2014;64(4):403–15.

    Article  PubMed  Google Scholar 

  57. Ioannidis SG, Mitsias PD. Patent foramen ovale in cryptogenic ischemic stroke: direct cause, risk factor, or incidental finding? Front Neurol. 2020;11:567.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mojadidi MK, Bogush N, Caceres JD, Msaouel P, Tobis JM. Diagnostic accuracy of transesophageal echocardiogram for the detection of patent foramen ovale: a meta-analysis. Echocardiography. 2014;31(6):752–8.

    Article  PubMed  Google Scholar 

  59. Kim YJ, Hur J, Shim CY, et al. Patent foramen ovale: diagnosis with multidetector CT-comparison with transesophageal echocardiography. Radiology. 2009;250(1):61–7.

    Article  PubMed  Google Scholar 

  60. Auer J. Coronary evaluation in patients with stroke: recognizing the risk. Atherosclerosis. 2015;238(2):427–9.

    Article  CAS  PubMed  Google Scholar 

  61. Boulanger M, Béjot Y, Rothwell PM, Touzé E. Long-term risk of myocardial infarction compared to recurrent stroke after transient ischemic attack and ischemic stroke: systematic review and meta-analysis. J Am Heart Assoc. 2018;7(2):e007267.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yoo J, Song D, Baek JH, et al. Poor long-term outcomes in stroke patients with asymptomatic coronary artery disease in heart CT. Atherosclerosis. 2017;265:7–13.

    Article  CAS  PubMed  Google Scholar 

  63. Yoon SH, Kim E, Jeon Y, et al. Prognostic value of coronary CT angiography for predicting poor cardiac outcome in stroke patients without known cardiac disease or chest pain: the assessment of coronary artery disease in stroke patients study. Korean J Radiol. 2020;21(9):1055–64.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hammer MM, Raptis DA, Cummings KW, et al. Imaging in blunt cardiac injury: computed tomographic findings in cardiac contusion and associated injuries. Injury. 2016;47(5):1025–30.

    Article  PubMed  Google Scholar 

  65. Gosavi S, Tyroch AH, Mukherjee D. Cardiac trauma. Angiology. 2016;67(10):896–901.

    Article  PubMed  Google Scholar 

  66. Koo HJ, Lee HN, Anh TT, et al. Postoperative complications after surgical aortic valve replacement. Cardiovasc Imaging Asia. 2017;1(4):222–30.

    Article  Google Scholar 

  67. Sanchez-Recalde A, Gonzalez-Obeso E, Oliver JM. Bilateral coronary artery occlusion after aortic valve replacement in a patient with porcelain ascending aorta. Eur Heart J. 2007;28(13):1553.

    Article  PubMed  Google Scholar 

  68. Soschynski M, Capilli F, Ruile P, Neumann FJ, Langer M, Krauss T. Post-TAVI follow-up with MDCT of the valve prosthesis: technical application, regular findings and typical local post-interventional complications. Rofo. 2018;190(6):521–30.

    Article  PubMed  Google Scholar 

  69. Ribeiro HB, Nombela-Franco L, Urena M, et al. Coronary obstruction following transcatheter aortic valve implantation: a systematic review. JACC Cardiovasc Interv. 2013;6(5):452–61.

    Article  PubMed  Google Scholar 

  70. Barbanti M, Petronio AS, Ettori F, et al. 5-year outcomes after transcatheter aortic valve implantation with CoreValve prosthesis. JACC Cardiovasc Interv. 2015;8(8):1084–91.

    Article  PubMed  Google Scholar 

  71. Jilaihawi H, Asch FM, Manasse E, et al. Systematic CT methodology for the evaluation of subclinical leaflet thrombosis. JACC Cardiovasc Imaging. 2017;10(4):461–70.

    Article  PubMed  Google Scholar 

  72. Blanke P, Reinöhl J, Schlensak C, et al. Prosthesis oversizing in balloon-expandable transcatheter aortic valve implantation is associated with contained rupture of the aortic root. Circ Cardiovasc Interv. 2012;5(4):540–8.

    Article  PubMed  Google Scholar 

  73. Salaun E, Jacquier A, Theron A, et al. Value of CMR in quantification of paravalvular aortic regurgitation after TAVI. Eur Heart J Cardiovasc Imaging. 2016;17(1):41–50.

    CAS  PubMed  Google Scholar 

  74. Kang EJ, Kim SM, Choe YH, Lee GY, Lee KN, Kim DK. Takayasu arteritis: assessment of coronary arterial abnormalities with 128-section dual-source CT angiography of the coronary arteries and aorta. Radiology. 2014;270(1):74–81.

    Article  PubMed  Google Scholar 

  75. Choe YH, Han BK, Koh EM, Kim DK, Do YS, Lee WR. Takayasu’s arteritis: assessment of disease activity with contrast-enhanced MR imaging. AJR Am J Roentgenol. 2000;175(2):505–11.

    Article  CAS  PubMed  Google Scholar 

  76. Mitani Y, Tsuda E, Kato H, et al. Emergence and characterization of acute coronary syndrome in adults after confirmed or missed history of Kawasaki disease in Japan: a Japanese Nationwide survey. Front Pediatr. 2019;7:275.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dietz SM, Tacke CE, Kuipers IM, et al. Cardiovascular imaging in children and adults following Kawasaki disease. Insights Imaging. 2015;6(6):697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim JW, Goo HW. Coronary artery abnormalities in Kawasaki disease: comparison between CT and MR coronary angiography. Acta Radiol. 2013;54(2):156–63.

    Article  PubMed  Google Scholar 

  79. Gue YX, Prasad S, Isenberg D, Gorog DA. A case of repetitive myocardial infarction with unobstructed coronaries due to Churg-Strauss syndrome. Eur Heart J Case Rep. 2019;3(2):ytz041.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kim SY, Seo JB, Do KH, et al. Coronary artery anomalies: classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiographics. 2006;26(2):317–33.

    Article  PubMed  Google Scholar 

  81. Kim H, Beck KS, Choe YH, Jung JI. Coronary-to-pulmonary artery fistula in adults: natural history and management strategies. Korean J Radiol. 2019;20(11):1491–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee BY. Anomalous right coronary artery from the left coronary sinus with an interarterial course: is it really dangerous? Korean Circ J. 2009;39(5):175–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Heermann P, Heindel W, Schülke C. Coronary artery anomalies: diagnosis and classification based on cardiac CT and MRI (CMR) - from ALCAPA to anomalies of termination. Rofo. 2017;189(1):29–38.

    PubMed  Google Scholar 

  84. Cheezum MK, Liberthson RR, Shah NR, et al. Anomalous aortic origin of a coronary artery from the inappropriate sinus of Valsalva. J Am Coll Cardiol. 2017;69(12):1592–608.

    Article  PubMed  Google Scholar 

  85. Boutsikou M, Shore D, Li W, et al. Anomalous left coronary artery from the pulmonary artery (ALCAPA) diagnosed in adulthood: varied clinical presentation, therapeutic approach and outcome. Int J Cardiol. 2018;261:49–53.

    Article  CAS  PubMed  Google Scholar 

  86. Elliott PM, Anastasakis A, Borger MA, et al. ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733–79.

    Article  PubMed  Google Scholar 

  87. Rudolph A, Abdel-Aty H, Bohl S, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol. 2009;53(3):284–91.

    Article  PubMed  Google Scholar 

  88. Hamilton-Craig C, Strugnell WE, Raffel OC, Porto I, Walters DL, Slaughter RE. CT angiography with cardiac MRI: non-invasive functional and anatomical assessment for the etiology in newly diagnosed heart failure. Int J Cardiovasc Imaging. 2012;28(5):1111–22.

    Article  PubMed  Google Scholar 

  89. White RD, Kirsch J, Bolen MA, et al. ACR appropriateness criteria(®) suspected new-onset and known nonacute heart failure. J Am Coll Radiol. 2018;15(11):S418–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, T.J., Lee, K.H., Choe, Y.H., Lee, K.S. (2021). Acute Cardiac Diseases: Evaluation with Computed Tomography and Magnetic Resonance Imaging. In: Emergency Chest Radiology. Springer, Singapore. https://doi.org/10.1007/978-981-33-4396-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4396-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4395-5

  • Online ISBN: 978-981-33-4396-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics