Skip to main content

Emerging and Eco-friendly Approaches for Waste Management

  • Chapter
  • First Online:
Waste to Energy: Prospects and Applications
  • 354 Accesses

Abstract

The exponential increase in waste accumulation with the increase in population at a global level is posing a great threat to the environment. Along with this, poor management and disposal systems, in turn, increase the adversity. Management of such enormously growing waste is a need for the scenario. Various organic and inorganic contaminants present in the waste possess the potential to harm the environment and need proper treatment before they encounter an environmental niche, to reduce their adverse effects. Conventional physical, chemical and biological treatments though can break these contaminants but are either less efficient or in turn cause damage to the environment due to the utilization of harsh chemicals, temperature or pressure conditions. High-efficiency eco-friendly treatments like enzymatic degradation, bioremediation, phytoremediation and composting can not only reduce the produced waste to a great extent but can also produce valuable products like biofuels, biofertilizers, etc. Henceforth, the present chapter illustrates the conventional as well as emerging eco-friendly approaches which can be utilized at a global scale to minimize the increasing threat of waste accumulation. Moreover, updated researches and waste management trends have been discussed to present an actual status of the eco-friendly approaches in waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Shafy HI, Mansour MSM (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt J Pet 27(4):1275–1290

    Article  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 213(1–4):251–273

    Article  CAS  Google Scholar 

  • Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol: [publication of the Brazilian Society for Microbiology] 47(1):110–119

    Article  CAS  Google Scholar 

  • Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. In: Methods in enzymology, vol 494, pp 327–351

    Google Scholar 

  • Babel S, Kurniawan TA (2004) Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54(7):951–967

    Article  CAS  PubMed  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Berhe T, Sahu O (2017) Chemically synthesized biofuels from agricultural waste: optimization operating parameters with surface response methodology (CCD). MethodsX 4:391–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj A, Yadav D, Varshney S (2015) Non-biodegradable waste-its impact & safe disposal. 3(1):184–191

    Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI (2020) Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 1–18

    Chapter  Google Scholar 

  • Bose P, Bose M, Kumar S (2002) Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc, and cyanide. Adv Environ Res 7(1):179–195

    Article  CAS  Google Scholar 

  • Brás I, Silva ME, Lobo G, Cordeiro A, Faria M, de Lemos LT (2017) Refuse derived fuel from municipal solid waste rejected fractions- a case study. Energy Procedia 120.(2017:349–356

    Article  CAS  Google Scholar 

  • Breault RW (2010) Gasification processes old and new: a basic review of the major technologies. Energies 3(2):216–240

    Article  CAS  Google Scholar 

  • Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, Karl DM, White AE, DeLong EF (2016) Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems 1(3):e00024–e00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70

    Article  CAS  Google Scholar 

  • Dahiya S, Joseph J (2015) High rate biomethanation technology for solid waste management and rapid biogas production: an emphasis on reactor design parameters. Bioresour Technol 188(2015):73–78

    Article  CAS  PubMed  Google Scholar 

  • Debertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manage Res 1(2):157–176

    Article  CAS  Google Scholar 

  • Devarapalli M, Atiyeh HK (2015) A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res J 2(3):268–280

    Article  CAS  Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4(314):1–13

    Google Scholar 

  • Dixit S, Yadav A, Dwivedi PD, Das M (2015) Toxic hazards of leather industry and technologies to combat threat: a review. J Clean Prod 87(15):39–49

    Article  CAS  Google Scholar 

  • Doiphode SM, Hinduja IN, Ahuja HS (2016) Developing a novel, sustainable and beneficial system for the systematic management of hospital wastes. J Clin Diagn Res: JCDR 10(9):LC06–LC11

    PubMed  Google Scholar 

  • Duncan AE, de Vries N, Nyarko KB (2018) Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water Air Soil Pollut 229(8):272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dussud C, Hudec C, George M, Fabre P, Higgs P, Bruzaud S, Delort AM, Eyheraguibel B, Meistertzheim AL, Jacquin J, Cheng J, Callac N, Odobel C, Rabouille S, Ghiglione JF (2018) Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front Microbiol 9(1571):1–13

    Google Scholar 

  • Environment Protection Agency United States. https://www.epa.gov/. Accessed 28 Aug 2020

  • Ezeonu CS, Tagbo R, Anike EN, Oje OA, Onwurah IN (2012) Biotechnological tools for environmental sustainability: prospects and challenges for environments in Nigeria-a standard review. Biotechnol Res Int 2012(450802):1–27

    Article  CAS  Google Scholar 

  • Farzad S, Mandegari MA, Görgens JF (2016) A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Res J 3(4):483–495

    Article  CAS  Google Scholar 

  • Feng W, Taylor KE, Biswas N, Bewtra JK (2013) Soybean peroxidase trapped in product precipitate during phenol polymerization retains activity and may be recycled. J Chem Technol Biotechnol 88(8):1429–1435

    Article  CAS  Google Scholar 

  • Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D (2018) Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environ Sci Europe 30(1):13

    Article  Google Scholar 

  • Garrido-Baserba M, Vinardell S, Molinos-Senante M, Rosso D, Poch M (2018) The economics of wastewater treatment decentralization: a techno-economic evaluation. Environ Sci Technol 52(15):8965–8976

    Article  CAS  PubMed  Google Scholar 

  • Global waste index 2019, Sensoneo. https://sensoneo.com/sensoneo-global-waste-index-2019/. Accessed 28 Aug 2020

  • Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3–4):501–551

    Article  CAS  Google Scholar 

  • Gómez-Méndez LD, Moreno-Bayona DA, Poutou-Piñales RA, Salcedo-Reyes JC, Pedroza-Rodríguez AM, Vargas A, Bogoya JM (2018) Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One 13(9):1–28

    Article  CAS  Google Scholar 

  • Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383(9928):1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Samant K, Sahu A (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int J Microbiol 2012(578925):1–5

    Article  CAS  Google Scholar 

  • Guven H, Ozgun H, Ersahin ME, Dereli RK, Sinop I, Ozturk I (2019) High-rate activated sludge processes for municipal wastewater treatment: the effect of food waste addition and hydraulic limits of the system. Environ Sci Pollut Res Int 26(2):1770–1780

    Article  CAS  PubMed  Google Scholar 

  • Hahladakis JN (2020) Delineating and preventing plastic waste leakage in the marine and terrestrial environment. Environ Sci Pollut Res Int 27(11):12830–12837

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. J Hazard Mater 118(1–3):113–120

    Article  CAS  PubMed  Google Scholar 

  • Kalam A, King A, Moret E, Weerasinghe U (2012) Combined heat and power systems: economic and policy barriers to growth. Chem Cent J 6(Suppl 1):S3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavitha T, Arjun JK, Aneesh B, Harikrishnan K (2016) Prokaryotic community profile in a wetland ecosystem. Int J Curr Res Biosci Plant Biol 3(5):59–64

    Article  CAS  Google Scholar 

  • Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a Waste 2.0: a global snapshot of solid waste management to 2050. Urban Development. Washington, DC: World Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/30317 License: CC BY 3.0 IGO

  • Keane MA (2009) Catalytic transformation of waste polymers to fuel oil. ChemSusChem 2(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Krounbi L, Enders A, van Es H, Woolf D, von Herzen B, Lehmann J (2019) Biological and thermochemical conversion of human solid waste to soil amendments. Waste Manage (New York, NY) 89:366–378

    Article  CAS  Google Scholar 

  • Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6(2):1–18

    Article  CAS  Google Scholar 

  • Kumar S, Smith SR, Fowler G, Velis C, Kumar SJ, Arya S, Rena, Kumar R, Cheeseman C (2017) Challenges and opportunities associated with waste management in India. R Soc Open Sci 4(3):160764

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo JH, Tseng HH, Rao PS, Wey MY (2008) The prospect and development of incinerators for municipal solid waste treatment and characteristics of their pollutants in Taiwan. Appl Therm Eng 28(17):2305–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le HT, Jantarat N, Khanitchaidecha W, Ratananikom K, Nakaruk A (2016) Utilization of waste materials for microbial carrier in wastewater treatment. BioMed Res Int 2016(6957358):1–6

    Google Scholar 

  • Liu R, Jadeja RN, Zhou Q, Liu Z (2012) Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ Eng Sci 29(6):494–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lofrano G, Meriç S, Zengin GE, Orhon D (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461–462:265–281

    Article  PubMed  CAS  Google Scholar 

  • Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev: MMBR, 66(3), 506–577.

    Google Scholar 

  • Martínez EJ, Raghavan V, González-Andrés F, Gómez X (2015) New biofuel alternatives: integrating waste management and single cell oil production. Int J Mol Sci 16(5):9385–9405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirbagheri SA, Hosseini SN (2005) Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination 171(1):85–93

    Article  CAS  Google Scholar 

  • Mishra S, Singh PK, Dash S, Pattnaik R (2018) Microbial pretreatment of lignocellulosic biomass for enhanced biomethanation and waste management. 3 Biotech 8(11):1–12

    Article  Google Scholar 

  • Mohammadi T, Razmi A, Sadrzadeh M (2004) Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination 167(15):379–385

    Article  CAS  Google Scholar 

  • Moreno J, Grasman S, van Engelen R, Nijmeijer K (2018) Upscaling reverse electrodialysis. Environ Sci Technol 52(18):10856–10863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassef E (2012) Removal of phosphates from industrial wastewater by chemical precipitation. Eng Sci Technol Int J 2(3):409–413

    Google Scholar 

  • Oberbeckmann S, Osborn AM, Duhaime MB (2016) Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 11(8):1–24

    Article  CAS  Google Scholar 

  • Park YK, Choi SJ, Jeon JK, Par SH, Ryoo R, Kim J, Jeong KE (2012) Catalytic conversion of waste particle board to bio-oil using nanoporous catalyst. J Nanosci Nanotechnol 12(7):5367–5372

    Article  CAS  PubMed  Google Scholar 

  • Pirsaheb M, Khosravi T, Sharafi K (2013) Domestic scale vermicomposting for solid waste management. Int J Recycl Org Waste Agric 2(4):1–5

    Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  PubMed  Google Scholar 

  • Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resource-Efficient Technol 2(4):175–184

    Article  Google Scholar 

  • Randhawa GK, Kullar JS (2011) Bioremediation of pharmaceuticals, pesticides, and petrochemicals with gomeya/cow dung. ISRN Pharmacol 2011(362459):1–7

    Article  Google Scholar 

  • Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2):174–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roddy DJ (2012) Biomass in a petrochemical world. Interface Focus 3(1):–20120038

    Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Article  PubMed  Google Scholar 

  • Santos AF, Santos CP, Matos AM, Cardoso O, Quina MJ (2020) Effect of thermal drying and chemical treatments with wastes on microbiological contamination indicators in sewage sludge. Microorganisms 8(3):376

    Article  CAS  Google Scholar 

  • Seltenrich N (2016) Emerging waste-to-energy technologies: solid waste solution or dead end? Environ Health Perspect 124(6):A106–A111

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalaby EA (2011) Prospects of effective microorganisms technology in wastes treatment in Egypt. Asian Pac J Trop Biomed 1(3):243–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Bhattacharya A (2017) Drinking water contamination and treatment techniques. Appl Water Sci 7(3):1043–1067

    Article  CAS  Google Scholar 

  • Singh A, Kaur A, Yadav RD, Mahajan R (2019) An efficient eco-friendly approach for recycling of newspaper waste. 3 Biotech 9(2):1–7

    Google Scholar 

  • Skubal LR, Meshkov NK, Rajh T, Thurnauer M (2002) Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J Photochem Photobiol A: Chem 148(1–3):393–397

    Article  CAS  Google Scholar 

  • Solanki MK, Solanki AC, Kumari B, Kashyap BK, Singh RK (2020) Plant and soil-associated biofilm-forming bacteria: their role in green agriculture. In: New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Elsevier, pp 151–164

    Google Scholar 

  • Song JH, Murphy RJ, Narayan R, Davies GB (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2127–2139

    Article  CAS  Google Scholar 

  • Uccello M, Malaguarnera G, Corriere T, Biondi A, Basile F, Malaguarnera M (2012) Risk of hepatocellular carcinoma in workers exposed to chemicals. Hepat Mon 12(10):1–9

    Article  Google Scholar 

  • Van Der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22(1):46–56

    Article  Google Scholar 

  • Velvizhi G, Shanthakumar S, Das B, Pugazhendhi A, Priya TS, Ashok B, Nanthagopal K, Vignesh R, Karthick C (2020) Biodegradable and non-biodegradable fraction of municipal solid waste for multifaceted applications through a closed loop integrated refinery platform: paving a path towards circular economy. Sci Total Environ 731(138049):1–28

    Google Scholar 

  • Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Article  CAS  PubMed Central  Google Scholar 

  • Wan Y, Huang X, Shi B, Shi J, Hao H (2019) Reduction of organic matter and disinfection byproducts formation potential by titanium, aluminum and ferric salts coagulation for micro-polluted source water treatment. Chemosphere 219(2019):28–35

    Article  CAS  PubMed  Google Scholar 

  • Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol 10(6):1308–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S-T, Yang S-T (2006) Bioprocessing for value-added products from renewable resources: new technologies and applications. Elsevier Science, USA

    Google Scholar 

  • Yang Z, Liu Y, Zhang J, Mao K, Kurbonova M, Liu G, Zhang R, Wang W (2020) Improvement of biofuel recovery from food waste by integration of anaerobic digestion, digestate pyrolysis and syngas biomethanation under mesophilic and thermophilic conditions. J Clean Prod 256(120594):1–10

    Google Scholar 

  • Zeliger HI (2013) Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases. Interdiscip Toxicol 6(3):103–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Wang M, Wang H, Tang D, Huang J, Sun Y (2019) Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria. Int J Environ Res Public Health 16(2):1–14

    Article  CAS  Google Scholar 

  • Zhou H, Smith DW (2002) Advanced technologies in water and wastewater treatment. J Environ Eng Sci 1(4):247–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, S., Pandey, A.K. (2020). Emerging and Eco-friendly Approaches for Waste Management. In: Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K. (eds) Waste to Energy: Prospects and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4347-4_3

Download citation

Publish with us

Policies and ethics