Skip to main content

Improving Impulse Noise Classification Using Ensemble Learning Methods

  • Conference paper
  • First Online:
Progress in Advanced Computing and Intelligent Engineering

Abstract

Medical image denoising is an essential pre-processing step in medical image processing which improves the performance of clinical diagnosis and prognosis. The high level medical image processing algorithms like segmentation, classification etc. works better if the image is denoised appropriately. The main objective of this research work is to find and replace only the corrupted pixels with suitable estimates of pixels in medical images. The other pixels which are not corrupted are left undisturbed, thereby preserving the image quality for proper diagnosis. For the primary task of finding the corrupted pixels, an ensemble of machine learning (EML) classifiers namely Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT or RT) and Random Forest (RF) are used by supervised learning methods. The final classification output is determined by the majority voting of the outputs of each ML classifier which works in parallel. By adopting this method, a classification accuracy of 99.87% is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–1407 (1996)

    MATH  Google Scholar 

  2. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–2075 (2003)

    Article  Google Scholar 

  3. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to Boosting. J. Comput. Syst. Sci. 55(1), 119–1396 (1997)

    Article  MathSciNet  Google Scholar 

  4. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–2608 (1992)

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Criminisi, A.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends® Comput. Graph. Vision 7(2–3), 81–227 (2011)

    Google Scholar 

  7. Bo, X., Zhouping, Y.: A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans. Image Process. 21(4), 1663–1675 (2012)

    Article  MathSciNet  Google Scholar 

  8. Garnett, R., Huegerich, T., Chui, C., Wenjie, H.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005). https://doi.org/10.1109/TIP.2005.857261

    Article  Google Scholar 

  9. Petrovic, N.I., Crnojevic, X.V.: Universal impulse noise filter based on genetic program-ming. IEEE Trans. Image Process. 17(7), 1109–1120 (2008)

    Article  MathSciNet  Google Scholar 

  10. Yiqiu, D., Chan, R.H., Shufang, X.: A detection statistic for random-valued impulse noise. IEEE Trans. Image Process. 16(4), 1112–1120 (2007)

    Article  MathSciNet  Google Scholar 

  11. Petrovic, N.I., Crnojevic, V.: Impulse noise filtering using robust pixel-wise S-estimate of variance. In: Proc. EURASIP J. Adv. Signal Process. 8 (2010)

    Google Scholar 

  12. Sebe, N., Cohen, I., Garg, A., Huang, T.S.: In: Machine Learning in Computer Vision” N, vol. 25. Springer Netherlands (2005)

    Google Scholar 

  13. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vision ISSN 1572–2740, Now Publishers, ISBN 1601985401, 9781601985408 (2012)

    Google Scholar 

  14. Criminisi, A., Shotton, J.: Decision forests for computer vision and medical image analysis. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4929-3

  15. Sun, T., Neuvo, Y.: Detail-preserving median based filters in image processing. Pattern Recognit. Lett. 15(4), 341–347 (1994)

    Google Scholar 

  16. Chen, T., Ma, K.K., Chen, L.H.: Tri-state median filter for image denoising. IEEE Trans. Image Process. 8(12), 1834–1838 (1999)

    Article  Google Scholar 

  17. Crnojevic, V., Senk, V., Trpovski, Z.: Advanced impulse detection based on pixel-wise MAD. IEEE Signal Process. Lett. 11(7), 589–592 (2004)

    Google Scholar 

  18. Dong, Y., Chan, R.H., Xu, S.: A detection statistic for random valued impulse noise. IEEE Trans. Image Process. 16(4), 1112–1120 (2007)

    Google Scholar 

  19. Xiong, B., Yin, Z.: A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans. Image Process. 21(4), 1663–1675 (2012)

    Google Scholar 

  20. Kunaraj K., Maria Wenisch S., Balaji S., Mahimai Don Bosco F.P.: Impulse noise classification using machine learning classifier and robust statistical features. In: Smys, S., Tavares, J., Balas, V., Iliyasu A. (eds.) Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and Computing, vol. 1108. Springer, Cham (2020)

    Google Scholar 

  21. http://www.oasis-brains.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunaraj Kumarasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumarasamy, K., Maria Wenisch, S., Balaji, S., Jenifer Suriya, L.J., Jerlin, A., Robert Rajkumar, S. (2021). Improving Impulse Noise Classification Using Ensemble Learning Methods. In: Panigrahi, C.R., Pati, B., Pattanayak, B.K., Amic, S., Li, KC. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 1299. Springer, Singapore. https://doi.org/10.1007/978-981-33-4299-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4299-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4298-9

  • Online ISBN: 978-981-33-4299-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics