Skip to main content

Nanofluids: Definition & Classification

  • Chapter
  • First Online:
Thermal Characteristics and Convection in Nanofluids

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The need of advanced heat transfer fluid leads to develop nanofluids. Nanofluids are the conventional heat transfer fluids containing solid nanoparticles. The chapter deals with basic introduction of nanofluids, development history of nanofluids and different classifications of nanofluids. Different conventional fluids have been used as the working fluid to transfer the heat in various processes. As a working fluid, water is used extensively due to its immense availability, but not considered as an efficient heat carrier due to low thermal conductivity. The alternates of water, like engine oil, ethylene glycol, etc., are also applied to the various applications, but higher viscosity and toxic nature have restricted the employability of these substitutes in the heat transfer processes. Thus, water has remained the only accessible option as working fluids. However, during the last few decades, it is observed by the researchers that these conventional working fluids have low thermophysical properties which confine the convection heat transfer rate. Hence, by improving the thermophysical properties of the working fluids, the heat transfer can be increased. Nanofluids could be a new dawn to the highly efficient heat flow technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maxwell, J. C. (1873). A treatise on electricity and magnetism (vol. 1). Clarendon press.

    Google Scholar 

  2. Vand, V. (1948). Viscosity of solutions and suspensions. II. Experimental determination of the viscosity–concentration function of spherical suspensions. Journal of Physical Chemistry, 52, 300–314.

    Google Scholar 

  3. Robinson, J. V. (1949). The Viscosity of Suspensions of Spheres. Journal of Physical Colloid Chemistry, 53, 1042–1056.

    Article  Google Scholar 

  4. Leal, L. G. (1973). On the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet number. Chemical Engineering Communications, 1, 21–31.

    Article  Google Scholar 

  5. Chung, Y. C., & Leal, L. G. (1982). An experimental study of the effective thermal conductivity of a sheared suspension of rigid spheres. International Journal of Multiphase Flow, 8, 605–625.

    Article  Google Scholar 

  6. Kianjah, H., & Dhir, V. K. (1989). Experimental and analytical investigation of dispersed flow heat transfer. Experimental Thermal and Fluid Science, 2, 410–424.

    Article  Google Scholar 

  7. Özbelge, T. A., & Somer, T. G. (1988). Hydrodynamic and heat transfer characteristics of liquid—solid suspensions in horizontal turbulent pipe flow. Chemical Engineering Journal, 38, 111–122.

    Article  Google Scholar 

  8. Murray, D. B. (1994). Local enhancement of heat transfer in a particulate cross flow—II experimental data and predicted trends. International Journal of Multiphase Flow, 20, 505–513.

    Article  MATH  Google Scholar 

  9. Booth, F. (1950). The electroviscous effect for suspensions of solid spherical particles. Proceedings of the Royal Society London A Mathematical and Physical Sciences, 203, 533–551.

    Article  MathSciNet  MATH  Google Scholar 

  10. Frankel, N. A., & Acrivos, A. (1967). On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847–853.

    Article  Google Scholar 

  11. Nir, A., & Acrivos, A. (1974). Experiments on the effective viscosity of concentrated suspensions of solid spheres. International Journal of Multiphase Flow, 1, 373–381.

    Article  Google Scholar 

  12. Van Kao, S., Nielsen, L. E. & Hill, C. T. (1975). Rheology of concentrated suspensions of spheres. I. Effect of the liquid—solid interface. Journal of Colloid and Interface Science, 53, 358–366.

    Google Scholar 

  13. Choi, S. U. S. & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles.

    Google Scholar 

  14. Chopkar, M., Das, P. K., & Manna, I. (2006). Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta Materialia, 55, 549–552.

    Article  Google Scholar 

  15. Paul, G., Chopkar, M., Manna, I., & Das, P. K. (2010). Techniques for measuring the thermal conductivity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 14, 1913–1924.

    Article  Google Scholar 

  16. He, Y., et al. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50, 2272–2281.

    Article  MATH  Google Scholar 

  17. Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87, 153107.

    Article  Google Scholar 

  18. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79, 2252–2254.

    Article  Google Scholar 

  19. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718–720.

    Article  Google Scholar 

  20. Vakili, M., Mohebbi, A., & Hashemipour, H. (2013). Experimental study on convective heat transfer of TiO2 nanofluids. Heat and Mass Transfer, 49, 1159–1165.

    Article  Google Scholar 

  21. Hwang, K. S., Jang, S. P., & Choi, S. U. S. (2009). Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, 52, 193–199.

    Article  MATH  Google Scholar 

  22. Li, C. H., & Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99, 84314.

    Article  Google Scholar 

  23. Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125, 567–574.

    Article  Google Scholar 

  24. Sen Gupta, S., et al. (2011). Thermal conductivity enhancement of nanofluids containing graphene nanosheets. Journal of Applied Physics, 110, 84302.

    Article  Google Scholar 

  25. Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45, 855–863.

    Article  MATH  Google Scholar 

  26. Zhu, H., Zhang, C., Liu, S., Tang, Y. & Yin, Y. (2006). Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. 023123, 4–7.

    Google Scholar 

  27. Xie, H., et al. (2002). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91, 4568–4572.

    Article  Google Scholar 

  28. Lee, D., Kim, J.-W., & Kim, B. G. (2006). A new parameter to control heat transport in nanofluids: Surface Charge state of the particle in suspension. Journal of Physical Chemistry B, 110, 4323–4328.

    Article  Google Scholar 

  29. Nguyen, C. T., et al. (2008). Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? International Journal of Thermal Sciences, 47, 103–111.

    Article  Google Scholar 

  30. Hammami, Y. El, Hattab, M. El, Mir, R. & Mediouni, T. (2015). Numerical study of natural convection of nanofluid in a square enclosure in the presence of the magnetic field. 230–239.

    Google Scholar 

  31. Nabati Shoghl, S., Jamali, J. & Keshavarz Moraveji, M. (2016). Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Experimental Thermal and Fluid Science, 74, 339–346.

    Google Scholar 

  32. Byrne, M. D., Hart, R. A., & Da Silva, A. K. (2012). Experimental thermal-hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. International Journal of Heat and Mass Transfer, 55, 2684–2691.

    Article  Google Scholar 

  33. Meibodi, M. E., et al. (2010). An estimation for velocity and temperature profiles of nanofluids in fully developed turbulent flow conditions. International Communications in Heat and Mass Transfer, 37, 895–900.

    Article  Google Scholar 

  34. Kumar, A. & Subudhi, S. (2018). Preparation, characteristics, convection and applications of magnetic nanofluids: A review. Heat and Mass Transfer und Stoffuebertragung, 54.

    Google Scholar 

  35. Raj, P., & Subudhi, S. (2018). A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renewable and Sustainable Energy Reviews, 84, 54–74.

    Article  Google Scholar 

  36. Rashidi, M., Kalantariasl, A., Saboori, R., Haghani, A., & Keshavarz, A. (2021). Performance of environmental friendly water-based calcium carbonate nanofluid as enhanced recovery agent for sandstone oil reservoirs. Journal of Petroleum Science and Engineering, 196, 107644.

    Article  Google Scholar 

  37. Mukherjee, S., Jana, S., Chandra Mishra, P., Chaudhuri, P., & Chakrabarty, S. (2021). Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube. International Journal of Thermal Sciences, 159, 106581.

    Article  Google Scholar 

  38. Mahmoudpour, M., & Pourafshary, P. (2021). Investigation of the effect of engineered water/nanofluid hybrid injection on enhanced oil recovery mechanisms in carbonate reservoirs. Journal of Petroleum Science and Engineering, 196, 107662.

    Article  Google Scholar 

  39. Naghdbishi, A., Yazdi, M. E., & Akbari, G. (2020). Experimental investigation of the effect of multi-wall carbon nanotube—Water/glycol based nanofluids on a PVT system integrated with PCM-covered collector. Applied Thermal Engineering, 178, 115556.

    Article  Google Scholar 

  40. Ahmed, W., et al. (2020). Effect of ZnO-water based nanofluids from sonochemical synthesis method on heat transfer in a circular flow passage. International Communications in Heat and Mass Transfer, 114, 104591.

    Article  Google Scholar 

  41. Naveenkumar, R., Ramesh Kumar, S., Giridharan, R. & Senthil Kumaran, S. (2020). Thermal Performance Enhancement in a Plain Tube fitted with perforated twisted tape insert using water based Al2O3 Nanofluid. Materials Today: Proceedings, 22, 2274–2282.

    Google Scholar 

  42. Aleem, M., Asjad, M. I., Shaheen, A., & Khan, I. (2020). MHD Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating. Chaos, Solitons & Fractals, 130, 109437.

    Article  MathSciNet  Google Scholar 

  43. Azimikivi, H., Purmahmud, N. & Mirzaee, I. (2020). Rib shape and nanoparticle diameter effects on natural convection heat transfer at low turbulence two-phase flow of Al2O3-Water nanofluid inside a square cavity: Based on Buongiorno’s two-phase model. Thermal Science and Engineering Progress, 100587. https://doi.org/10.1016/j.tsep.2020.100587.

  44. Alshayji, A., Asadi, A., & Alarifi, I. M. (2020). On the heat transfer effectiveness and pumping power assessment of a diamond-water nanofluid based on thermophysical properties: An experimental study. Powder Technology, 373, 397–410.

    Article  Google Scholar 

  45. Das, R. K., Sokhal, G. S., & Sehgal, S. S. (2020). A numerical study on the performance of water based copper oxide nanofluids in compact channel. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.02.956.

    Article  Google Scholar 

  46. Sharma, P., Kumar, V., Singh Sokhal, G., Dasaroju, G. & Kumar Bulasara, V. (2020). Numerical study on performance of flat tube with water based copper oxide nanofluids. Materials Today: Proceedings, 21, 1800–1808.

    Google Scholar 

  47. Hu, Y.-P., Li, Y.-R., Lu, L., Mao, Y.-J., & Li, M.-H. (2020). Natural convection of water-based nanofluids near the density maximum in an annulus. International Journal of Thermal Sciences, 152, 106309.

    Article  Google Scholar 

  48. Maaref, S., Kantzas, A., & Bryant, S. L. (2020). The effect of water alternating solvent based nanofluid flooding on heavy oil recovery in oil-wet porous media. Fuel, 282, 118808.

    Article  Google Scholar 

  49. Arora, S., et al. (2020). Performance and cost analysis of photovoltaic thermal (PVT)-compound parabolic concentrator (CPC) collector integrated solar still using CNT-water based nanofluids. Desalination, 495, 114595.

    Article  Google Scholar 

  50. Sahota, L., Arora, S., Singh, H. P., & Sahoo, G. (2020). Thermo-physical characteristics of passive double slope solar still loaded with MWCNTs and Al2O3-water based nanofluid. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.01.600.

    Article  Google Scholar 

  51. Ansarpour, M., Danesh, E., & Mofarahi, M. (2020). Investigation the effect of various factors in a convective heat transfer performance by ionic liquid, ethylene glycol, and water as the base fluids for Al2O3 nanofluid in a horizontal tube: A numerical study. International Communications in Heat and Mass Transfer, 113, 104556.

    Article  Google Scholar 

  52. Gallego, A., Herrera, B., Buitrago-Sierra, R., Zapata, C., & Cacua, K. (2020). Influence of filling ratio on the thermal performance and efficiency of a thermosyphon operating with Al2O3-water based nanofluids. Nano-Structures & Nano-Objects, 22, 100448.

    Article  Google Scholar 

  53. Abdelrazik, A. S., et al. (2020). Optical, stability and energy performance of water-based MXene nanofluids in hybrid PV/thermal solar systems. Solar Energy, 204, 32–47.

    Article  Google Scholar 

  54. Gallego, A., et al. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Advanced Powder Technology, 31, 560–570.

    Article  Google Scholar 

  55. Kumar, A. & Subudhi, S. (2019). Preparation, characterization and heat transfer analysis of nanofluids used for engine cooling. Applied Thermal Engineering, 160.

    Google Scholar 

  56. Paul, G., Pal, T., & Manna, I. (2010). Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique. Journal of Colloid and Interface Science, 349, 434–437.

    Article  Google Scholar 

  57. Phuoc, T. X., Soong, Y., & Chyu, M. K. (2007). Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Optics and Lasers in Engineering, 45, 1099–1106.

    Article  Google Scholar 

  58. Margeat, O., Respaud, M., Amiens, C., Lecante, P., & Chaudret, B. (2010). Ultrafine metallic Fe nanoparticles: Synthesis, structure and magnetism. Beilstein Journal of Nanotechnology, 1, 108–118.

    Article  Google Scholar 

  59. Katiyar, A., Dhar, P., Nandi, T., & Das, S. K. (2016). Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids. Journal of Magnetism and Magnetic Materials, 419, 588–599.

    Article  Google Scholar 

  60. Karimi, A. S. Afghahi, S. S., Shariatmadar, H. & Ashjaee, M. (2014). Experimental investigation on thermal conductivity of MFe2O4 (M = Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochimica Acta, 598, 59–67.

    Google Scholar 

  61. Lee, S., Choi, S. U.-S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289.

    Article  Google Scholar 

  62. Liu, M., Zhou, M., Yang, H., Ren, G., & Zhao, Y. (2016). Titanium dioxide nanoparticles modified three dimensional ordered macroporous carbon for improved energy output in microbial fuel cells. Electrochimica Acta, 190, 463–470.

    Article  Google Scholar 

  63. Shen, L. P., Wang, H., Dong, M., Ma, Z. C. & Wang, H. B. (2012). Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid. Physics Letters, Section A: General, Atomic and Solid State, 376, 1053–1057.

    Google Scholar 

  64. Su, F., Ma, X., & Lan, Z. (2011). The effect of carbon nanotubes on the physical properties of a binary nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 42, 252–257.

    Article  Google Scholar 

  65. Yang, L., Xu, J., Du, K., & Zhang, X. (2017). Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technology, 317, 348–369.

    Article  Google Scholar 

  66. Sharma, T., Mohana Reddy, A. L., Chandra, T. S. & Ramaprabhu, S. (2008). Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy, 33, 6749–6754.

    Google Scholar 

  67. Żyła, G., Vallejo, J. P., Fal, J., & Lugo, L. (2018). Nanodiamonds—Ethylene Glycol nanofluids: Experimental investigation of fundamental physical properties. International Journal of Heat and Mass Transfer, 121, 1201–1213.

    Article  Google Scholar 

  68. Bandarra Filho, E. P., Mendoza, O. S. H., Beicker, C. L. L., Menezes, A. & Wen, D. (2014). Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Conversion and Management, 84, 261–267.

    Google Scholar 

  69. Lamas, B., Abreu, B., Fonseca, A., Martins, N., & Oliveira, M. (2012). Assessing colloidal stability of long term MWCNT based nanofluids. Journal of Colloid and Interface Science, 381, 17–23.

    Article  Google Scholar 

  70. Yang, J., et al. (2011). Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. Small (Weinheim an der Bergstrasse, Germany), 7, 2334–2340.

    Article  Google Scholar 

  71. Engler, H., Borin, D., & Odenbach, S. (2009). Thermomagnetic convection influenced by the magnetoviscous effect Thermomagnetic convection influenced by the magnetoviscous effect.. https://doi.org/10.1088/1742-6596/149/1/012105.

    Article  Google Scholar 

  72. Odenbach, S., & Störk, H. (1998). Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates. Journal of Magnetism and Magnetic Materials, 183, 188–194.

    Article  Google Scholar 

  73. Odenbach, S. (2003). Magnetic fluids—Suspensions of magnetic dipoles and their magnetic control. Journal of Physics: Condensed Matter, 15.

    Google Scholar 

  74. Rosensweig, R. E. (1969). Viscosity of magnetic fluid in a magnetic field. Journal of Colloid and Interface Science, 20, 680–687.

    Article  Google Scholar 

  75. Shliomis, M. (1972). Effective viscosity of magnetic suspensions. Soviet Physics, JETP, 34, 1291–1294.

    Google Scholar 

  76. Shliomis, M. I., & Morozov, K. I. (1994). Negative viscosity of ferrofluid under alternating magnetic field. Physics of Fluids, 6, 2855–2861.

    Article  MATH  Google Scholar 

  77. Zablotsky, D., Mezulis, A., & Blums, E. (2009). Surface cooling based on the thermomagnetic convection: Numerical simulation and experiment. International Journal of Heat and Mass Transfer, 52, 5302–5308.

    Article  Google Scholar 

  78. Jana, S., Salehi-Khojin, A., & Zhong, W.-H. (2007). Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochimica Acta, 462, 45–55.

    Article  Google Scholar 

  79. Chamsa-Ard, W., Brundavanam, S., Fung, C. C., Fawcett, D. & Poinern, G. (2017). Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A Review. Nanomater. (Basel, Switzerland), 7, 131.

    Google Scholar 

  80. Timofeeva, E. V., et al. (2007). Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 76, 28–39.

    Google Scholar 

  81. Yoo, D.-H., Hong, K. S., & Yang, H.-S. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta, 455, 66–69.

    Article  Google Scholar 

  82. Lee, J.-H. H., et al. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3nanoparticles. International Journal of Heat and Mass Transfer, 51, 2651–2656.

    Article  Google Scholar 

  83. Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47, 560–568.

    Article  Google Scholar 

  84. Oh, D.-W., Jain, A., Eaton, J. K., Goodson, K. E., & Lee, J. S. (2008). Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. International Journal of Heat and Fluid Flow, 29, 1456–1461.

    Article  Google Scholar 

  85. Chandrasekar, M., Suresh, S. & Chandra Bose, A. (2010). xperimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science, 34, 210–216.

    Google Scholar 

  86. Ali, F. M., Yunus, W. M. M., & Talib, Z. A. (2013). Study of the effect of particles size and volume fraction concentration on the thermal conductivity and thermal diffusivity of Al2O3 nanofluids. International Journal of Physical Sciences, 8, 1442–1457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Subudhi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Subudhi, S. (2021). Nanofluids: Definition & Classification. In: Thermal Characteristics and Convection in Nanofluids. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-4248-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4248-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4247-7

  • Online ISBN: 978-981-33-4248-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics