Skip to main content

Pollination and Ecological Intensification: A Way Towards Green Revolution

  • Chapter
  • First Online:
  • 720 Accesses

Abstract

Coping with the negative influence of indigenous agricultural technologies, sustainable intensification has emerged to replace the term ‘green revolution’ and is widely used in agricultural sector. Sustainable ecological intensification, minimizing the agricultural inputs by maximizing ecosystem services is desperately required to feed the increasingly demanding human population. Enhanced yields of food with increased nutrition from the same land surface by supporting biodiversity and ecosystem service refers to ecological intensification. Inventions in agricultural sector are heading towards green revolution, whereby agricultural production is drastically increased with minimal inputs to feed the ever-increasing world population. To attain sustainability it is essential to enhance the pollinator services. Pollination is needed for plants to reproduce and set seeds, which is traditionally aided by honey bees or other insects as pollinators for centuries. Pollinators are vital in determining the fertility of plant and are keystone process in any ecosystems. Pollinators are responsible for the food crop production meeting human diet, but their population is constantly deteriorating. They not only contribute to our food supply, but are the crucial fragment of biodiversity that all forms of life rest on. Technology has aided in agricultural crop production by inventing different techniques and equipment’s to support food production. Traditional ecological structure is modified leading to several ill effects that drastically affect the pollination and bee population. Since bee pollination is an important aid for any crop production, the tragic decline in bee population has forced to artificially pollinate the crops which are labour intensive and economically not feasible. There is a wide expansion in cultivation of insect-pollinated crops lately, which leads to huge increase in demand of 300% for pollination services. As per various scientific reports, the economics of pollination services is about more than 200 billion dollar or approximately 10% of world’s food production. Pollinator-dependent crops have widened their range, increasing demand for pollination services up to 300% worldwide. The quality and quantity of crop production deter due to extinction of bees. Research should focus on encouraging bee keeping for sustained global growth of food production. Reducing the usage of chemical pesticides and leaning of plant-based botanicals for crop protection in an organic manner of crop production and planting more bright coloured flowers in the vicinity will add for bees to thrive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

FAO:

Food and Agriculture Organization

NAS:

National Academy of Sciences

NRC:

National Research Council

IPCC:

Intergovernmental Panel on Climate Change

IPBES:

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

References

  • Abramovitz JN (1998) Putting a value on nature’s ‘free’ services. World Watch (January–February):10–19

    Google Scholar 

  • Adamson NL, Roulston TH, Fell RD, Mullins DE (2012) Wild bees pollinating crops through the growing season in Virginia, USA. Environ Entomol 41:813–821

    Article  Google Scholar 

  • Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19(11):915–918

    Article  CAS  PubMed  Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S, Cane J, Cox PA, Dalton V, Medellin P, Medellin-Morales S, Nabhan GP, Pavlik B, Tepedino V, Torchio P, Walker S (1998) The potential consequences of pollinator declines on conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Allsopp MH, de Lange WJ, Veldtman R (2008) Valuing insect pollination services with cost of replacement. PLoS One 3:e3128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson B, Johnson SD (2009) Geographical covariation and local convergence of flower depth in a guild of fly-pollinated plants. New Phytol 182:533–540

    Article  PubMed  Google Scholar 

  • Andersson S (2003) Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae) to floral scents. Chemoecology 13:1–11

    Article  CAS  Google Scholar 

  • Andersson S, Dobson HEM (2003) Behavioral foraging responses by the butterfly Heliconius melpomene to Lantana camara. J Chem Ecol 29:2303–2318

    Article  CAS  PubMed  Google Scholar 

  • Armbruster WS (1993) Evolution of plant pollination systems – hypotheses and tests with the neotropical vine, Dalechampia. Evolution 47:1480–1505

    Article  PubMed  Google Scholar 

  • Ashman TL (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Ashman TL, Bradburn M, Cole DH, Blaney BH, Raguso RA (2005) The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant. Ecology 86:2099–2105

    Article  Google Scholar 

  • Baldwin CS (1988) The influence of field windbreaks on vegetable and specialty crops. Agric Ecosyst Environ 22:191–203

    Article  Google Scholar 

  • Balmford A, Bruner A, Cooper P, Costanza R, Farber S, Green RE, Jenkins M, Jefferiss P, Jessamy V, Madden J, Munro K, Myers N, Naeem S, Paavola J, Rayment M, Rosendo S, Roughgarden J, Trumper K, Turner RK (2002) Why conserving wild nature makes economic sense. Science 297:950–953

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. Apple Academic Press Inc., CRC Press – A Taylor and Francis Group, US & Canada, p 400. https://doi.org/10.1201/9780429276026

    Book  Google Scholar 

  • Banskota AH, Yasuhiro T, Shigetoshi K (2001) Recent progress in pharmacological research of propolis. Phytother Res 15(7):561–571. https://doi.org/10.1002/ptr.1029

    Article  CAS  PubMed  Google Scholar 

  • Barnett EA, Charlton AJ, Fletcher MR (2007) Incidents of bee poisoning with pesticides in the United Kingdom. Pest Manag Sci 63:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH (2010) Darwin’s legacy: the forms, function and sexual diversity of flowers. Philos Trans R Soc Lond B Biol Sci 365(1539):351–368. https://doi.org/10.1098/rstb.2009.0212

    Article  PubMed  PubMed Central  Google Scholar 

  • Barth FG (1991) Insects and flowers. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MAK, Morton RD, Smart SM, Memmott J (2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer D, Wang I (2010) Economic consequences of pollinator declines: a synthesis. Agric Resour Econ Rev 39(3):368–383. https://doi.org/10.1017/S1068280500007371

    Article  Google Scholar 

  • Bell G (1985) On the function of flowers. Proc R Soc London B 224:223–265

    Article  Google Scholar 

  • Benadi G, Thomas H, Poethke H (2013) When can plant-pollinator interactions promote plant diversity? Am Nat 182(2):131–146. https://doi.org/10.1086/670942

    Article  PubMed  Google Scholar 

  • Bertin RI (1982) Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am J Bot 69:122–134

    Article  Google Scholar 

  • Beverly JR, Erik SJ (1993) Pollination biology in tropics. Curr Sci 65(3):273–277

    Google Scholar 

  • Biesmeijer JC, Roberts SP, Reemer M, Ohlemueller R, Edwards M, Peters T, Schaffers A, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in northwest Europe. Britain and the Netherlands. Science 313:5785

    Article  CAS  Google Scholar 

  • Billeter R (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45(1):141–150

    Article  Google Scholar 

  • Bloch G (2010) Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees. Proc Natl Acad Sci U S A 107(25):11240–11244. https://doi.org/10.1073/pnas.1003265107

    Article  PubMed  PubMed Central  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Boulter SL, Kitching RL, Zalucki JM, Goodall KL (2006) Threats to pollination systems. In: Reproductive biology and pollination in rainforest trees: techniques for a community-level approach. Cooperative Research Centre for Tropical Rainforest Ecology and Management Rainforest CRC, 5356, Cairn, Australia

    Google Scholar 

  • Bradbear N (2003) Bees are diligent pollinators of fruit and seed crops. In: Beekeeping and sustainable livelihoods. Food and Agriculture Organisation of the United Nations

    Google Scholar 

  • Branquart E, Hemptinne JL (2000) Selectivity in the exploitation of floral resources by hoverflies (Diptera: Syrphinae). Ecography 23(6):732–742

    Article  Google Scholar 

  • Breeze TD (2011) Pollination services in the UK: how important are honeybees? Agric Ecosyst Environ 142(3–4):137–143

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2004) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  Google Scholar 

  • Brittain CA (2010) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl Ecol 11(2):106–115

    Article  CAS  Google Scholar 

  • Buchmann SL (1996) Competition between honey bees and native bees in the Sonoran desert and global bee conservation issues. In: Matheson A, O’Toole C, Buchmann S, Westrick P, Williams I (eds) The Conservation of Bees. Academic Press, New York

    Google Scholar 

  • Buchmann SE, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, DC

    Google Scholar 

  • Buchmann SL, Gary P, Nabhan S (1997) The forgotten pollinators. Island Press, Washington, DC

    Google Scholar 

  • Burger BV (2005) Mammalian semiochemicals. In: Chemistry of pheromones and other semiochemicals. II, vol 240. Springer, Heidelberg, Germany, pp 231–278

    Chapter  Google Scholar 

  • Calderone NW (2012) Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7(5):e37235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL, Robinson GE (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci U S A 108:662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cane JH (1994) Nesting biology and mating behavior of the Southeastern blueberry bee, Habropoda laboriosa (Hymenoptera: Apidae). J Kans Entomol Soc 67:236–241

    Google Scholar 

  • Cane JH, Payne S (1988) Foraging ecology of the bee Habropoda laboriosa (Hymenoptera: Anthophoridae), an oligolege of blueberries (Ericaceae: Vaccinium) in the South Eastern United States. Ann Entomol Soc Am 81:419–427

    Article  Google Scholar 

  • Cane JH, Payne S (1990) Native bee pollinates rabbit eye blueberry. Highl Agric Res 37:4

    Google Scholar 

  • Cane JH, Payne S (1993) Regional, annual, and seasonal variation in pollinator guilds: Intrinsic traits of bees (Hymenoptera: Apoidea) Underlie their patterns of abundance at Vaccinium ashei (Ericaceae). Ann Entomol Soc Am 86:577–588

    Article  Google Scholar 

  • Cane JH, Griswold T, Parker FD (2007) Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Ann Entomol Soc Am 100:350–358

    Article  Google Scholar 

  • Carthew SM, Goldingay RL (1997) Non-flying mammals as pollinators. Trends Ecol Evol 12(3):104–108

    Article  CAS  PubMed  Google Scholar 

  • Caruso CM, Peterson SB, Ridley CE (2003) Natural selection on floral traits of Lobelia (Lobeliaceae): spatial and temporal variation. Am J Bot 90:1333–1340

    Article  PubMed  Google Scholar 

  • Chagnon M (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134. https://doi.org/10.1007/s11356-014-3277-x

    Article  CAS  Google Scholar 

  • Chapelin-viscardi JD, Tosser V, Maillet-Mezeray J, Sarthou V (2015) Contribution à la connaissance de la consommation de pollen par six espèces de Syrphes auxiliaires en milieux agricoles (Diptera Syrphidae). L’Entomologiste 71(3):169–178

    Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comparative Physiol A 170:533–543

    Article  Google Scholar 

  • Chittka L, Raine N (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435. https://doi.org/10.1016/j.pbi.2006.05.002

    Article  PubMed  Google Scholar 

  • Chittka L, Thomson JD (2001) Cognitive ecology of pollination. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Christopher E (2000) Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 81(2):532–542. https://doi.org/10.2307/177446

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365

    Article  PubMed  Google Scholar 

  • Cole LJ, Brocklehurst S, Robertson D, Harrison W, McCracken DI (2017) Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric Ecosyst Environ 246:157–167

    Article  Google Scholar 

  • Conradt L, Roper TJ (2005) Consensus decision making in animals. Trends Ecol Evol 20(8):449–456. https://doi.org/10.1016/j.tree.2005.05.008

    Article  PubMed  Google Scholar 

  • Cooley AM, Carvallo G, Willis JH (2008) Is floral diversification associated with pollinator divergence? Flower shape, flower colour and pollinator preference in Chilean Mimulus. Ann Bot 101:641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbet S (2000) Conserving compartments in pollination webs. Conserv Biol 14(5):1229–1231

    Article  Google Scholar 

  • Cortopassi-Laurino M, Knoll FRN, Ribeiro MF, van Heemert C, de Ruijter A (1991) Food plant preferences of Friesella schrottkyi. Acta Hort 288:382–385

    Article  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon K, Limburg S, Naeem RV, O’Neill J, Paruelo RG, Raskin P, Sutton van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6230):253–260

    Article  CAS  Google Scholar 

  • Crane E (1999) The world history of beekeeping and honey hunting. Routledge, London, p 682

    Book  Google Scholar 

  • Cruden R, Wand Hermann-Parker SM (1979) Butterfly pollination of Caesalpinia pulcherrima, with observations on a psychophilous syndrome. Ecology 67:155–168

    Article  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, West SA (2004) Learning, odour preference and flower foraging in moths. J Exp Biol 207:87–94

    Article  PubMed  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, Cribb BW (2006) Insect odour perception: recognition of odour components by flower foraging moths. Proc Royal Soc London B 273:2035–2040

    Google Scholar 

  • Dafni A (1990) Advertisement, flower longevity, reward and nectar protection in Labiatae. Act Hort 288:340–346

    Google Scholar 

  • Dafni A, Kevan PG (1996) Floral symmetry and nectar guides: Ontogenetic constraints from floral development, colour pattern rules and functional significance. Bot J Linn Soc 120:371–377

    Article  Google Scholar 

  • Dafni A, Bernhardt P, Shmida A (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Israel J Bot 39:81–92

    Google Scholar 

  • Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island, Washington, DC

    Google Scholar 

  • Dams LR (1978) Bees and honey-hunting scenes in the mesolithic rock art of Eastern Spain. Bee World 59(2):45–53. https://doi.org/10.1080/0005772X.1978.11097692

    Article  Google Scholar 

  • Danforth BN, Sipes S, Fang J, Brady SG (2006) The history of early bee diversification based on five genes plus morphology. Proc Natl Acad Sci U S A 103(41):15118–15123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaplane KS (2011) Understanding the impact of honey bee disorders on crop pollination. In: Sammataro D, Yoder JA (eds) Honey bee colony health: challenges and sustainable solutions. CRC Press, Boca Raton, FL, pp 223–228

    Chapter  Google Scholar 

  • Delaplane KS, Mayer DF (2000) Crop pollination by bees. CABI Publishing, NY

    Book  Google Scholar 

  • Delaplane KS, Thomas PA, McLaurin WJ (2010) Bee pollination of Georgia crop plants. In: University of Georgia cooperative extension cooperative extension bulletin 1106

    Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Deuri A, Rahman A, Gogoi J, Borah P, Bathari M (2018) Pollinator diversity and effect of Apis cerana F. pollination on yield of mango (Mangifera indica L.). J Entomol Zoology Stud 6(5):957–961

    Google Scholar 

  • Deutsch CA (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105(18):6668–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz (2015) The IPBES Conceptual Framework – connecting nature and people. Curr Opin Environ Sustain 14:1–16

    Article  Google Scholar 

  • DiPasquale GM, Salignon S, LeConte LP, Belzunces A, Cecourtye A, Kretzschmar S, Suchail JLB, Alaux C (2010) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS One 8(8):e72016

    Article  CAS  Google Scholar 

  • Dobson HEM (1994) Floral volatiles in insect biology. In: Bernays EA (ed) Insect-plant Interactions. CRC Press, London, Tokyo, pp 47–81

    Google Scholar 

  • Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Taylor & Francis Group, Boca Raton, pp 147–198

    Google Scholar 

  • Donaldson J, Nanni I, Zachariades C, Kemper J (2002) Effects of habitat fragmentation on pollinator diversity and plant reproductive success in renosterveld shrublands of South Africa. Conserv Biol 16(5):1267–1276

    Article  Google Scholar 

  • Donkersley P, Rhodes G, Pickup RW, Jones KC, Wilson K (2012) Honeybee nutrition is linked to landscape composition. Ecol Evol 4(21):4195–4206

    Article  Google Scholar 

  • Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can J Zool 88:668–697

    Article  Google Scholar 

  • Dotterl S, Jurgens A, Seifert K, Laube T, Weissbecker B, Schutz S (2006) Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718

    Article  CAS  PubMed  Google Scholar 

  • Dötterl S, Glück U, Jürgens A, Woodring J, Aas G (2014) Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea. PLoS One 9:e93421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dover JW, Sparks TH, Greatorex-Davies JN (1997) The importance of shelter for butterflies in open landscapes. J Insect Conserv 1:89–97

    Article  Google Scholar 

  • Drescher N, Klein AM, Schmitt T, Leonhardt SDA (2019) A clue on bee glue: New insight into the sources and factors driving resin intake in honeybees (Apis mellifera). PLoS One 14:e0210594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du ZY, Wang QF (2014) Correlations of life form, pollination mode and sexual system in aquatic angiosperms. PLoS One 9(12):e115653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebert A (2011) Nectar for the taking: the popularization of scientific bee culture in England, 1609–1809. Agric Hist 85:322–343

    Article  PubMed  Google Scholar 

  • Edwards PJ, Abivardi C (1998) The value of biodiversity: where ecology and economy blend. Biol Conserv 83(3):239–246

    Article  Google Scholar 

  • Eilers EJ (2011) Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS One 6(6):e21363. https://doi.org/10.1371/journal.pone.0021363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis H (2014) Spoonfuls of honey. A complete guide to honey’s flavours & culinary uses with over 80 recipes. Pavilion Books, London

    Google Scholar 

  • Ellis AM, Samuel S, Myers R, Taylor H (2015) Do pollinators contribute to nutritional health? PLoS One 10(1):e114805. https://doi.org/10.1371/journal.pone.0114805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enserink M (1999) Predicting invasions: biological invaders sweep. Science 285(5435):1834–1836

    Article  CAS  Google Scholar 

  • Everaars J (2012) The response of solitary bees to landscape configuration with focus on body size and nest-site preference. Dissertation (Helmholtz-Zentrum für Umweltforschung – UFZ) 7/2012:1–146

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fang J (2010) Ecology: a world without mosquitoes. Nature 466:432–434

    Article  CAS  PubMed  Google Scholar 

  • FAO (2008) The value of bees for crop pollination. http://www.fao.org/3/i0842e/i0842e09.pdf. Accessed 15 Apr 2019

  • FAO (2016) FAO’s global action on pollination services for sustainable agriculture. http://www.fao.org/pollination/projects/en/. Accessed 17 Mar 2016

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Ann Rev Ecol Systematics 35:375–403

    Article  Google Scholar 

  • Filipiak M (2019) Key pollen host plants provide balanced diets for wild bee larvae: a lesson for planting flower strips and hedgerows. J Appl Ecol 56:1410–1418

    Article  CAS  Google Scholar 

  • Foley K, Fazio G, Jensen AB, Hughes WHO (2012) Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. J Invertebr Pathol 111:68–73

    Article  PubMed  Google Scholar 

  • Forup ML (2003) The restoration of plant-pollinator interactions. PhD thesis, University of Bristol

    Google Scholar 

  • Fowler J (2016) Specialist bees of the Northeast: host plants and habitat conservation. Northeastern Naturalist 23:305–320

    Article  Google Scholar 

  • Free JB (1993) Insect pollination of crops. Academic Press, London-New York

    Google Scholar 

  • Galen C, Kevan PG (1980) Scent and color, floral polymorphisms and pollination biology in Polemonium viscosum. Nutt Am Midland Naturalist 104:281–289

    Article  Google Scholar 

  • Gallai N (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68(3):810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014

    Article  Google Scholar 

  • Gallai N, Salles J, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • Gallen C (1999) Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations. BioSci 49:631–640. https://doi.org/10.2307/1313439

    Google Scholar 

  • Garibaldi L, Pérez-Méndez N, Garratt M, Gemmill-Herren B, Miguez F, Dicks L (2019) Policies for ecological intensification of crop production. Trends Ecol Evol 34:10

    Article  Google Scholar 

  • Gaus H, Larsen H (2009) Pollination of fruit trees – Fact Sheet No.7.002. Colorado State University

    Google Scholar 

  • Geslin N (2013) Plant pollinator networks along a gradient of urbanisation. PLoS One 8(5):e63421

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghazoul J (2002) Flowers at the front line of invasion? Ecol Entomol 27:638–640

    Article  Google Scholar 

  • Ghazoul J (2005) Business as usual? Questioning the global pollination crisis. Trends Ecol Evol 20(7):367–373

    Article  PubMed  Google Scholar 

  • Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P (2015) Brazil’s Soy Moratorium. Science 347(6220):377–378

    Article  CAS  PubMed  Google Scholar 

  • Gikungu MW (2006) Bee diversity and some aspects of their ecological Interactions with plants in a successional tropical community. Ph.D. Thesis, University of Bonn, Germany

    Google Scholar 

  • Gilbert LE (1975) Ecological consequences of a coevolved mutualism between butterflies and plants. In: Gilbert LE, Raven RH (eds) Coevolution of animals and plants. University of Texas Press, Austin and London, pp 210–240

    Chapter  Google Scholar 

  • Gilbert LE (1981) Foraging ecology of hoverflies: morphology of the mouthparts in relation to feeding on nectar and pollen in some common urban species. Ecol Entomol 6(3):245–262. https://doi.org/10.1111/j.1365-2311.1981.tb00612.x

    Article  Google Scholar 

  • Gill RA (1991) The value of honeybee pollination to society. Acta Horticulturae 288:62–68

    Article  Google Scholar 

  • Gill R, Baldock K, Brown M, Cresswell J, Dicks L, Fountain M, Garratt M, Gough L, Heard M, Holland J, Ollerton J, Stone G, Tang C, Vanbergen A, Vogler A, Woodward G, Arce A, Boatman N, Brand-Hardy R, Potts S (2016) Protecting an ecosystem service: approaches to understanding and mitigating threats to wild insect pollinators. Adv Ecol Res 54:135

    Article  Google Scholar 

  • Gilliam M, Prest DB, Lorenz BJ (1989) Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidology 20:53–68

    Article  Google Scholar 

  • Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382:458–461

    Article  CAS  PubMed  Google Scholar 

  • Glavan G, Bozic J (2013) The synergy of xenobiotics in honey bee Apis mellifera: mechanisms and effects. Acta Biologica Slovenica 56:11–25

    Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Gomez FG, David ER, Ramiro QL, María PBG, Patricia TG, Reyes TG, Cristina RP, Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26

    Article  Google Scholar 

  • Goulson D (2008) Decline and conservation of bumble bees. Ann Rev Entomol 53:191–208

    Article  CAS  Google Scholar 

  • Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957

    Article  PubMed  CAS  Google Scholar 

  • Greenaway W, Scaysbrook T, Whatley FR (1990) The composition and plant origins of propolis: a report of work at Oxford. Bee World 71:107–118

    Article  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hadley A, Betts M (2011) The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol Rev Camb Philos Soc 87:526–544. https://doi.org/10.1111/j.1469-185X.2011.00205.x

    Article  PubMed  Google Scholar 

  • Hanley N, Spash CL (1998) Cost-benefit analysis and the environment. Edward Elgar Publishing, Cheltenham, UK

    Google Scholar 

  • Hanley ME, Franco M, Pichon S, Darvill B, Goulson D (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct Ecol 22:592–598. https://doi.org/10.1111/j.1365-2435.2008.01415

    Article  Google Scholar 

  • Hans P, Thomas S (2004) Flowers, faeces and cadavers: natural feeding and laying habits of flesh flies in Thailand (Diptera: Sarcophagidae, Sarcophaga spp.). J Nat Hist 38:1677–1694. https://doi.org/10.1080/0022293031000156303

    Article  Google Scholar 

  • Heal G (2000) Nature and the marketplace: capturing the value of ecosystem services. Island, Covelo, CA

    Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  CAS  PubMed  Google Scholar 

  • Heiling AM, Herberstein ME, Chittka L (2003) Pollinator attraction: crab-spiders manipulate flower signals. Nature 421:334

    Article  CAS  PubMed  Google Scholar 

  • Heithaus ER (1974) The role of plant-pollinator interactions in determining community structure. Ann Missouri Bot Garden 61:675–691

    Article  Google Scholar 

  • Henry M, Beguin M, Requier F, Rolling O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350

    Article  CAS  PubMed  Google Scholar 

  • Herrera CM (1993) Selection on floral morphology and environmental determinants of fecundity in hawkmoth-pollinated violets. Ecol Monogr 63:251–275

    Article  Google Scholar 

  • Hill DB, Webster TC (2016) Apiculture and forestry (bees and trees). Agr Syst 1995(29):313–320

    Google Scholar 

  • Hoballah ME, Stuurman J, Heath RR, Landolt PJ, Dueben B, Lenczewski B (1992) Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths. Env Entomol 21:854–859

    Article  Google Scholar 

  • Hogg BN, Bugg RL, Daane KM (2011) Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol Control 56(1):76–84

    Article  Google Scholar 

  • Hung KJ, Kingstin JM, Albrecht M, Holway DA, Kohn JR (2018) The worldwide importance of honey bees as pollinators in natural habitats. Proc R Soc B 285(1870). https://doi.org/10.1098/rspb.2017.2140

  • Ingram M, Nabhan G, Buchmann S (1996) Our forgotten pollinators: protecting the birds and bees. Global Pesticide Campaigner 6(4) www.pmac.net/birdbee.html

  • IPBES (2016) The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. In: Potts SG, Imperatriz-Fonseca V, Ngo HT (eds) Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES, Bonn, Germany, p 552

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team et al (eds) Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, p 104

    Google Scholar 

  • Ivey CT, Martinez P, Wyatt R (2003) Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnata (Apocynaceae). Am J Bot 90:214–225

    Article  PubMed  Google Scholar 

  • Jander K, Herre E (2010) Host sanctions and pollinator cheating in the fig tree-fig wasp mutualism. Proc Royal Soc B: Biol Sci 277(1687):1481–1488. https://doi.org/10.1098/rspb.2009.2157

    Article  Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. In: Zlatic M (ed) Precious forests-precious earth. InTech, Croatia, Europe, pp 237–257. https://doi.org/10.5772/60841

    Chapter  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2018a) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. Daya Publishing House, A Division of Astral International Pvt. Ltd, New Delhi, pp 231–247

    Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018b) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, pp 315–345. https://doi.org/10.1007/978-981-13-0253-4_10

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer Nature Singapore Pte Ltd, Singapore, p 606. https://doi.org/10.1007/978-981-13-6830-1

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. Apple Academic Press Inc., CRC Press – a Taylor and Francis Group, US & Canada, p 335. https://doi.org/10.1201/9780429057274

    Book  Google Scholar 

  • Johansen CA, Mayer DF (1990) Pollinator protection: a bee and pesticide handbook. Wicwas Press, Cheshire, Connecticut, USA

    Google Scholar 

  • Johnson S, Steven J (2004) The consequences of habitat fragmentation for plant–pollinator mutualisms. Int J Trop Insect Sci 24:29–43. https://doi.org/10.1079/IJT20049

    Article  Google Scholar 

  • Johnson SD, Pauw A, Midgley J (2001) Rodent pollination in the African Lily, Massonia depressa (Hyacinthaceae). Am J Bot 88:1768–1773

    Article  CAS  PubMed  Google Scholar 

  • Jones GD, Stanley DG (2001) The uses of pollen and its implication for entomology. Neotrop Entomol 30(3):11–14

    Article  Google Scholar 

  • Jose (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agr Syst 76:1–10

    Article  Google Scholar 

  • Kariyat RR, Scanlon SR, Moraski RP, Stephenson AG, Mescher MC, De Moraes CM (2014) Plant inbreeding and prior herbivory influence the attraction of caterpillars (Manduca sexta) to odors of the host plant Solanum carolinense (Solanaceae). Am J Bot 101:376–380

    Article  CAS  PubMed  Google Scholar 

  • Kassie M, Teklewold H, Jaleta M (2015) Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 42:400–411

    Article  Google Scholar 

  • Kells AR, Goulson D (2003) Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biol Conserv 109:165–174

    Article  Google Scholar 

  • Kevan PG, Lane MA (1985) Flower petal microtexture is a tactile cue for bees. Proc Natl Acad Sci U S A 82:4750–4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kevan PG, Phillips TP (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conserv Ecol 5(1):8

    Google Scholar 

  • Kevan PG, Randolf M (2012) The plight of pollination and the interface of neurobiology, ecology and food security. Environmentalist 32:300–310. https://doi.org/10.1007/s10669-012-9394-5

    Article  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup – a case study from Chhattisgarh, India. Environ Sci Pollut Res 27(3):2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Pollut Res 27(5):5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Kislev M (2006) Early domesticated fig. Jordan Valley Sci 312(5778):1372–1374. https://doi.org/10.1126/science.1125910

    Article  CAS  Google Scholar 

  • Klarhe U, Gurba A, Herman K, Saxenhofer M, Bossolini E, Guerin PM, Kuhlemeier C (2011) Pollinator choice in Petunia depends on two major generic loci for floral scent production. Curr Biol 21:730–739

    Article  CAS  Google Scholar 

  • Klatt BK (2014) Bee pollination improves crop quality, shelf life and commercial value. Proc Biol Sci/Royal Soc 281(1775). https://doi.org/10.1098/rspb.2013.2440

  • Kleijn D, Bommarco R, Fijen TPM, Garibaldi LA, Potts SG, van der Putten WH (2019) Ecological intensification: bridging the gap between science and practice. Trends Ecol Evol 34:154–166

    Article  PubMed  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2006) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 3721:1–11. https://doi.org/10.1098/rspb.2006.3721

    Google Scholar 

  • Klein BE, Vaissiere JH, Cane I, Steffan-Dewenter SA, Cunningham C, Kremen T, Tscharntke (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, Biological Sciences 274 (1608):303–313

    Google Scholar 

  • Kluser S, Peduzzi P (2017) Global pollinator decline: a literature review. UNEP/GRID-Europe

    Google Scholar 

  • Knudsen JT, Tollsten L (1993) Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Bot J Linnean Soc 113:263–284

    Article  Google Scholar 

  • Knudsen JT, Andersson S, Bergman P (1999) Floral scent attraction in Geonoma macrostachys, an understorey palm of the Amazonian rain forest. Oikos 85:409–418

    Article  Google Scholar 

  • Krell FT (2006) Fossil record and evolution of Scarabaeoidea (Coleoptera: Polyphaga). Coleopt Bull 60:120–143. https://doi.org/10.1649/0010-065X(2006)602.0.CO;2

    Article  Google Scholar 

  • Kremen C, Chaplin-Kramer R (2007) Insects as providers of ecosystem services: crop pollination on pest control. Royal Entomol Soc:349–382

    Google Scholar 

  • Kremen C, Niles JO, Dalton MG, Daily GC, Ehrlich PR, Fay JP, Grewal D, Guillery RP (2000) Economic incentives for rain forest conservation across scales. Science 288:1828–1832

    Article  CAS  PubMed  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99:16812–11681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna S, Keasar T (2018) Morphological complexity as a floral signal: from perception by insect pollinators to co-evolutionary implications. Int J Mol Sci 19(6):1681. https://doi.org/10.3390/ijms19061681

    Article  CAS  PubMed Central  Google Scholar 

  • Kudo G, Nishikawa Y, Kasagi T, Kosuge S (2004) Does seed production of spring ephemerals decrease when spring comes early? Ecol Res 19:255–259

    Article  Google Scholar 

  • Kumar S, Meena RS, Jhariya MK (2020) Resources Use Efficiency in Agriculture. Springer Nature Singapore Pte Ltd, Singapore, p 760. https://doi.org/10.1007/978-981-15-6953-1

    Book  Google Scholar 

  • Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12:447–456

    Article  Google Scholar 

  • Lehrer M, Bischof S (1995) Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82:145–147

    Article  CAS  Google Scholar 

  • Levy S (2011) What’s best for bees. Pollinating insects are in crisis. Understanding bees’ relationships with introduced species could help. Nature 479:164–165

    Article  CAS  PubMed  Google Scholar 

  • Li C, Xu B, Wang Y, Yang Z, Yang W (2014) Protein content in larval diet affects adult longevity and antioxidant gene expression in honey bee workers. Entomol Exp Appl 151:19–26. https://doi.org/10.1111/eea.12167

    Article  CAS  Google Scholar 

  • Libbrecht R, Keller L (2015) The making of eusociality: insights from two bumble bee genomes. Genome Biol 16:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loose JL, Drummond FA, Stubbs C, Woods S (2005) Conservation and management of native bees in cranberry. Maine Agricultural & Forest Experiment Station, Orono, ME

    Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by Insects. BioScience 56:311–323

    Article  Google Scholar 

  • Luig J, Peterson K (2005) Human impacts on pollinators and pollination services – ALARM Socioeconomic Working Paper, p 24. http://seit.ee/files/SEIT-DP1-0311-2005.pdf

  • Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19

    Article  Google Scholar 

  • Macdonald KJ, Kelly D, Tylianakis JM (2018) Do local landscape features affect wild pollinator abundance, diversity and community composition on Canterbury farms? NZ J Ecol 42:262–268

    Google Scholar 

  • Maini S, Medrzycki P, Porrini C (2010) The puzzle of honey bee losses: a brief review. Bull Insectol 63(1):153–160

    Google Scholar 

  • Mandelik Y, Winfree R, Neeson T, Kremen C (2012) Complementary habitat use by wild bees in agro-natural landscapes. Ecol Appl 22:1535–1546

    Article  PubMed  Google Scholar 

  • Mao W, Schuler MA, Berenbaum MR (2013) Honey constituents upregulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc Natl Acad Sci 110:8842–8846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxim L, Jeroen P, van der S (2013) Seed-dressing systemic insecticides and honeybees. In: European Environment Agency (ed) Late lessons from early warnings: science, precaution, innovation. European Environment Agency (EEA) report 1/2013, Copenhagen, pp 401–438

    Google Scholar 

  • McDade LA, Kinsman S (1980) The impact of floral parasitism in two neotropical hummingbird pollinated plant species. Evolution 34:944–958

    PubMed  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for Soil Health and Sustainable Management. Springer, Singapore, p 541. https://doi.org/10.1007/978-981-13-0253-4_10

    Book  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijaykumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land (MDPI) 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752

    Article  CAS  Google Scholar 

  • Melathopoulos AP, Cutler GC, Tyedmers P (2015) Where is the value in valuing pollination ecosystem services to agriculture? Ecol Econ 109:59–70

    Article  Google Scholar 

  • Menzel R, Shinida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: The Israeli flora as a case study. Biol Rev 68:81–120

    Article  Google Scholar 

  • Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore and London

    Google Scholar 

  • Miyake T, Yafuso M (2003) Floral scents affect reproductive success in fly-pollinated Alocasia odora (Araceae). Am J Bot 90:370–376

    Article  PubMed  Google Scholar 

  • Moldenke AR (1976) Pollination ecology as an assay for ecosystemic organization-e-convergent evolution in Chile and California. Phytologia 42:415–454

    Google Scholar 

  • Morandin LA, Kremen C (2013) Bee preference for native versus exotic plants in restored agricultural hedgerows. Restor Ecol 21:26–32

    Article  Google Scholar 

  • Morandin LA, Winston ML (2006) Pollinators provide economic incentive to preserve natural land in agroecosystems. Agric Ecosyst Environ 116:289–292

    Article  Google Scholar 

  • Moritz RF, Härtel S, Neumann P (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecosci 12:289–301

    Article  Google Scholar 

  • Morse RA, Calderone NW (2000) The value of honey bee pollination in the United States. Bee Culture 128:1–15

    Google Scholar 

  • Moss RH, Schneider SH (2000) Uncertainties in the IPCC TAR: recommendations to lead authors for more consistent assessment and reporting. In: Pachauri R, Taniguchi T, Tanaka K (eds) Guidance papers on the cross cutting issues of the third assessment report of the IPCC. World Meteorological Organization, Geneva, pp 33–51

    Google Scholar 

  • Muchhala N, Caiza A, Vizuete JC, Thomson JD (2008) A generalized pollination system in the tropics: bats, birds and Aphelandra acanthus. Ann Bot 103:1481–1487. https://doi.org/10.1093/aob/mcn260

    Article  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, van Engelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5(3):e9754. https://doi.org/10.1371/journal.pone.0009754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murren CJ (2012) The integrated phenotype. Integr Comp Biol 52:64–76

    Article  PubMed  Google Scholar 

  • Nabhan GP, Buchmann SL (1997) Services provided by pollinators. In: Daily G (ed) Nature’s services. Island Press, Washington, DC, pp 133–150

    Google Scholar 

  • NAS (2007) Status of pollinators in North America. National Academies Press, Washington, DC

    Google Scholar 

  • Naug D (2009) Nutritional stress due to habitat loss may explain recent honey bee colony collapses. Biol Conserv 142:2369–2372

    Article  Google Scholar 

  • Nicole W (2015) Pollinator power: nutrition security benefits of an ecosystem service. Environ Health Perspect 123:A210–A215

    Article  PubMed  PubMed Central  Google Scholar 

  • Norton RL (1988) Windbreaks: benefits to orchard and vineyard crops. Agric Ecosyst Environ 22:205–213

    Article  Google Scholar 

  • Novais SMA, Nunes CA, Santos NB, D’Amico AR, Fernandes GW, Quesada M (2016) Effects of a possible pollinator crisis on food crop production in Brazil. PLoS One 11(11):e0167292. https://doi.org/10.1371/journal.pone.0167292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • NRC (2007) Status of pollinators in North America. National Academies Press, Washington, DC. www.nap.edu/catalog.php?record_id=11761

    Google Scholar 

  • O’Brien M (2018) Notes on Dianthidium Simile (Cresson) (Hymenoptera: Megachilidae) in Michigan. Gt Lakes Entomol 40:1

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Ostaff DP, Mosseler A, Johns RC, Javorek S, Klymko J, Ascher JS (2015) Willows (Salix spp.) as pollen and nectar sources for sustaining fruit and berry pollinating insects. Can J Plant Sci 95:505–516

    Article  Google Scholar 

  • Painkra GP, Bhagat PK, Jhariya MK, Yadav DK (2016) Beekeeping for poverty alleviation and livelihood security in Chhattisgarh, India. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, India, pp 429–453

    Google Scholar 

  • Pattinson D (2012) Pre-modern beekeeping in China: a short history. Agric Hist 86:235–255

    Article  Google Scholar 

  • Peakall R, Handel SN, Beattie AJ (1991) The evidence for, and importance of, ant pollination. In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, Oxford, pp 421–429

    Google Scholar 

  • Peñalver (2012) Thrips pollination of Mesozic gymnosperms. PNAS Early Edition

    Google Scholar 

  • Pettis JS, Lichtenberg EM, Andree M, Stizinger J, Rose R, van Engelsdorp D (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8(7):e70182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinzauti M (1986) The influence of the wind on nectar secretion from the melon and on the flight of bees: the use of an artificial wind-break. Apidologie 17:63–72

    Article  Google Scholar 

  • Policarová J, Cardinal S, Martins AC, Straka J (2019) The role of floral oils in the evolution of apid bees (Hymenoptera: Apidae). Biol J Linn Soc 128:486–497

    Google Scholar 

  • Pombal ECP, Morellato LP (2000) Differentiation of floral color and odor in two fly pollinated species of Metrodorea (Rutaceae) from Brazil. Plant Systematics Evol 221:141–156

    Article  Google Scholar 

  • Portman ZM, Orr MC, Griswold TA (2019) Review and updated classification of pollen gathering behavior in bees (Hymenoptera, Apoidea). J Hymenopt Res 71:171–208

    Article  Google Scholar 

  • Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol Entomol 30:78–85

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229

    Article  CAS  PubMed  Google Scholar 

  • Praz CJ, Müller A, Dorn S (2008) Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen? Ecology 89:795–804. https://doi.org/10.1890/07-0751.1

    Article  PubMed  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Harper Collins Publishers, New York

    Google Scholar 

  • Rader R (2015) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci 113(1):146–151. https://doi.org/10.1073/pnas.1517092112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raguso RA, Willis MA (2005) Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Anim Behav 69:407–418

    Article  Google Scholar 

  • Raine NE, Ings TC, Dornhaus A, Saleh N, Chittka L (2006) Adaptation, genetic drift, pleiotropy, and history in the evolution of bee foraging behavior. Adv Study Behav 36:305–354

    Article  Google Scholar 

  • Raj A, Jhariya MK, Harne SS (2018) Threats to biodiversity and conservation strategies. In: Sood KK, Mahajan V (eds) Forests, climate change and biodiversity. Kalyani Publisher, India, pp 304–320

    Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS (2019a) Agroforestry: a holistic approach for agricultural sustainability. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer Nature Singapore Pte Ltd, Singapore, pp 101–131. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Banerjee A, Yadav DK, Meena RS (2019b) Soil for sustainable environment and ecosystems management. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer Nature Singapore Pte Ltd, Singapore, pp 189–221. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. Apple Academic Press Inc., CRC Press – a Taylor and Francis Group, US & Canada, p 383. https://doi.org/10.1201/9780429286759

    Book  Google Scholar 

  • Rausher M (2008) Evolutionary transitions in floral color. Int J Plant Sci 169(10):1086/523358

    Google Scholar 

  • Rebekka S, Totland R, Láza Ro A (2016) Experimental simulation of pollinator decline causes community – wide reductions in seedling diversity and abundance. Ecology 97(6):1420–1430

    Article  Google Scholar 

  • Reitz SR (2009) Biology and ecology of the Western flower thrips (Thysanoptera: Thripidae): the making of a pest. Florida Entomologist 92:7–13

    Article  Google Scholar 

  • Rhodes J (2002) Cotton pollination by honeybees. Aust J Exp Agric 42:513–518. https://doi.org/10.1071/EA01063

    Article  Google Scholar 

  • Richards KW (1993) Non-Apis bees as crop pollinators. Rev Suisse Zool 100:807–822

    Article  Google Scholar 

  • Ricketts TH, Regetz J, Steffan Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmil-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Riffell JA, Alarcón R, Abrell L, Davidowitz G, Bronstein JL, Hildebrand JG (2008) Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. PNAS 105:3404–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers J, Charlotte S (2012) Here is my honey-machine: Sylvia Plath and the mereology of the Beehive. Rev of English Stud 63:293–310

    Article  Google Scholar 

  • Rosegrant MW, Paisner MS, Meijer S, Witcover J (2001) 2020 global food outlook: trends, alternatives, and choices. A 2020 vision for Food, Agriculture and Environment Initiative. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Rotheray GE, Gilbert F (2011) The natural history of hoverflies. Forrest Text, Tresaith

    Google Scholar 

  • Roubik DW (1995) Pollination of cultivated plants in the tropics. Food Agric. Org. U.N, Rome

    Google Scholar 

  • Roubik DW (1996) African honeybees as exotic pollinators in French Guiana. In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The conservation of bees. Academic Press, London, pp 173–182

    Google Scholar 

  • Roubik D (2018) The Pollination of Cultivated Plants. A Compendium for Practitioners. Volume 2.

    Google Scholar 

  • Roulston TH, Cane JH (2002) The effect of pollen protein concentration on body size in the sweat bee, Lasioglossum zephyrum (Hymenoptera: Apiformes). Evol Ecol 16:49–65. https://doi.org/10.1023/A:1016048526475

    Article  Google Scholar 

  • Roulston TH, Cane JH, Buchmann SL (2008) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monographs 70:617–643

    Google Scholar 

  • Russo L, Danforth B (2017) Pollen preferences among the bee species visiting apple (Malus pumila) in New York. Apidologie 48:806–820

    Article  Google Scholar 

  • Salzmann CC, Nardella AM, Cozzolino S, Schiestl FP (2007) Variability in floral scent in rewarding and deceptive orchids: the signature of pollinator-imposed selection? Ann Bot 100:757–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardiñas HS, Ponisio LC, Kremen C (2016) Hedgerow presence does not enhance indicators of nest-site habitat quality or nesting rates of ground-nesting bees. Restor Ecol 24:499–505

    Article  Google Scholar 

  • Schmehl DR, Peter EA, Teal JL, Frazier CM, Grozinger S (2015) Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J Insect Physiol 71:177–190

    Article  CAS  Google Scholar 

  • Schmider F, Escaille T (2013) Pollinators and agriculture: agricultural productivity and pollinator protection. In: Brochure – European Land Owners Organisation (ELO) and European Crop Protection Association (ECP). https://www.ecpa.eu/sites/default/files/Pollinators%20brochure_BàT2.pdf

    Google Scholar 

  • Schmidt J, Johnson BE (1984) Pollen feeding preference of Apis mellifera, a polylectic bee. Southwest Entomol 9:41–47

    Google Scholar 

  • Schoeneberger MM, Bentrup G, Patel-Weynand T (2017) Agroforestry: enhancing resiliency in U.S. agricultural landscapes under changing conditions. U.S. Department of Agriculture, U.S. Forest Service, Washington, DC

    Google Scholar 

  • Sessions LA (2000) A floral twist of fate. Nat Hist 109(7):38

    Google Scholar 

  • Shore J, Spencer B (2011) The effect of pollination intensity and incompatible pollen on seed set in Turnera ulmifolia (Turneraceae). Can J Bot 62:1298–1303. https://doi.org/10.1139/b84-175

    Article  Google Scholar 

  • Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311

    Article  Google Scholar 

  • Simone-Finstrom M, Borba RS, Wilson M, Spivak M (2017) Propolis counteracts some threats to honey bee health. Insects 8:46

    Article  PubMed Central  Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, India, pp 125–145

    Google Scholar 

  • Skogsmyr I, Lankinen A (2002) Sexual selection: an evolutionary force in plants. Biol Rev 77(4):537–562. https://doi.org/10.1017/S1464793102005973

    Article  PubMed  Google Scholar 

  • Smith GR, Snow GE (1976) Pollination ecology of Platanthera (Hebenaria) ciliaris and Platanthera blepharoglottis (Orchidaceae). Bot Gaz 137:133–140

    Article  Google Scholar 

  • Soares-Filho B, Rajão R, Macedo M, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A (2014) Cracking Brazil’s forest code. Science 344(6182):363–364

    Article  CAS  PubMed  Google Scholar 

  • Spivak M, Mader E, Vaughan M, Euliss NH (2011) The plight of the bees. Environ Sci Tech 45:34–38

    Article  CAS  Google Scholar 

  • Steffan-Dewenter I (2003) Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv Biol 17:1036–1044

    Article  Google Scholar 

  • Steinhauer NA, Rennich K (2014) A national survey of managed honey bee 2012–2013 annual colony losses in the USA: results from the Bee Informed Partnership. http://hdl.handle.net/1957/49861

  • Stokstad E (2007) The case of the empty hives. Science 316:970–972. https://doi.org/10.1126/science.316.5827.970

    Article  CAS  PubMed  Google Scholar 

  • Stubbs CS, Jacobson HA, Osgood EA, Drummond FA (1992) Alternative forage plants for native (wild) bees associated with lowbush blueberry, Vaccinium spp. Maine Agricultural & Forest Experiment Station, Orono, ME, p 57

    Google Scholar 

  • Subba R, Meera B (1984) Butterflies and pollination biology. Proc Ind Acad Sci (Anim Sci) 93(4):391–396

    Article  Google Scholar 

  • Svensson B, Lagerlöf J, Svensson BG (2000) Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agric Ecosyst Environ 77:247–255

    Article  Google Scholar 

  • Tasei JN, Aupinel P (2008) Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39:397–409

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thompson DM (2006) Detecting the effects of introduced species: a case study of competition between Apis and Bombus. Oikos 114:407–418

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson R, Naylor L, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Troje N (1993) Spectral categories in the learning behaviour of blowflies. Zeitschrift für Naturforschung 48:96–104

    Article  Google Scholar 

  • Tsukada MSS, Tsukada Y (1986) Oldest primitive agriculture and vegetational environments in Japan. Nature 322:632–634

    Article  Google Scholar 

  • Udawatta RP, Rankoth LM, Jose S (2019) Agroforestry and biodiversity. Sustainability 11(10):2879. https://doi.org/10.3390/su11102879

    Article  Google Scholar 

  • Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, Michez D (2014) How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS One 9:e86209. https://doi.org/10.1371/journal.pone.0086209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varah A, Jones H, Smith J, Potts SG (2013) Enhanced biodiversity and pollination in UK agroforestry systems. J Sci Food Agric 93:2073–2075

    Article  CAS  PubMed  Google Scholar 

  • Vasanthakumar S, Aruna R, Srinivasan MR (2018) Pollination efficiency of Indian Honey bees, Apis cerana indica (Fabricius) in mango orchard. In: Conference proceedings: international conference on biocontrol and sustainable insect pest management (ICBS 2018), Killikulam, Tamil Nadu, India, pp 579–582

    Google Scholar 

  • Vaudo AD, Tooker JF, Grozinger CM, Patch HM (2015) Bee nutrition and floral resource restoration. Curr Opin Insect Sci 10:133–141

    Article  PubMed  Google Scholar 

  • Vorobyev M, Gumbert A, Kunze J, Giurfa M, Menzel R (1997) Flowers through insect eyes. Isr J F Sci 45:93–101

    Google Scholar 

  • Wang B, Ma JYM, Kenna D, Yan EV, Zhang HC, Jarzembowski EA (2013) The earliest known longhorn beetle (Cerambycidae: Prioninae) and implications for the early evolution of Chrysomeloidea. J Syst Palaeontol 12(5):565–574. https://doi.org/10.1080/14772019.2013.806602

    Article  Google Scholar 

  • Wcislo WT, Cane JH (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu Rev Entomol 41:257–286

    Article  CAS  PubMed  Google Scholar 

  • Weberling F (1989) Morphology of flowers and inflorescences. Cambridge University Press, Cambridge

    Google Scholar 

  • Wester P, Johnson SD (2017) Importance of birds versus insects as pollinators of the African shrub Syncolostemon densiflorus (Lamiaceae). Bot J Linnean Soc 185(2):225–239. https://doi.org/10.1093/botlinnean/box054

    Article  Google Scholar 

  • Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 47(7):706–709

    Article  CAS  Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  CAS  PubMed  Google Scholar 

  • Will MF (1983) Plant reproduction ecology. Wiley-Interscience, New York, p 218

    Google Scholar 

  • Wille A, Orozco E, Raabe C (1983) Polinizaci´on del chayote Sechium edule (Jacq.) Swartz en Costa Rica. Rev Biol Trop 31:145–154

    Google Scholar 

  • William PN, Anderson L (1974) Insect pollinators frequenting strawberry blossoms and the effect of honey bees on yield and fruit quality. J Am Soc Hort Sci 99(1):40–44

    Article  Google Scholar 

  • Williamsm NM, Kremen C (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl 17:910–921

    Article  Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Wilson MF, Price PW (1983) The evolution of inflorescence size in Asclepias (Asclepiadaceae). Evolution:495–511

    Google Scholar 

  • Winfree R, Gross BJ, Kremen C (2011) Valuing pollination services to agriculture. Ecol Econ 71:80–88

    Article  Google Scholar 

  • Wolf H, Wehner R (2000) Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J Exp Biol 203:857–868

    Article  CAS  PubMed  Google Scholar 

  • Wood TJ, Holland JM, Goulson D (2017) Providing foraging resources for solitary bees on farmland: current schemes for pollinators benefit a limited suite of species. J Appl Ecol 54:323–333

    Article  Google Scholar 

  • Wood TJ, Kaplan I, Szendrei Z (2018) Wild bee pollen diets reveal patterns of seasonal foraging resources for honey bees. Front 6:210

    Google Scholar 

  • Wratten SD, White AJ, Bowie MH, Berry NA, Weigmann U (1995) Phenology and ecology of hoverflies (Diptera: Syrphidae) in New Zealand. Environ Entomol 24:565–600

    Article  Google Scholar 

  • Wright GA, Lutmerding A, Dudareva N, Smith BH (2005) Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees. J Comparative Physiol A 191:105–114

    Article  CAS  Google Scholar 

  • Xie H, Huang Y, Chen Q, Zhang Y, Qing W (2019) Review prospects for agricultural sustainable intensification: a review of research. Landarzt 8:157. https://doi.org/10.3390/land8110157

    Article  Google Scholar 

  • Yoder JA, Jajack AJ, Rosselot AE, Smith TJ, Yerke MC, Sammataro D (2013) Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J Toxicol Environ Health Part A 76:587–600

    Article  CAS  Google Scholar 

  • Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci U S A 102:10742–10746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamala, I.M., Devanand, I.I. (2021). Pollination and Ecological Intensification: A Way Towards Green Revolution. In: Jhariya, M.K., Meena, R.S., Banerjee, A. (eds) Ecological Intensification of Natural Resources for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-33-4203-3_11

Download citation

Publish with us

Policies and ethics