Skip to main content

Solving Time-Fractional Parabolic Equations with the Four Point-HSEGKSOR Iteration

  • Conference paper
  • First Online:
Computational Science and Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 724))

Abstract

The goal is to show the usefulness of the 4-point half-sweep EGKSOR (4HSEGKSOR) iterative scheme by implementing the half-sweep approximation equation based on the Grünwald-type fractional derivative and implicit finite difference (IFD) method to solve one-dimensional (1D) time-fractional parabolic equations compared to full-sweep Kaudd Successive over-relaxation (FSKSOR) and half-sweep Kaudd Successive over-relaxation (HSKSOR) methods. The formulation and implementation of the 4HSEGKSOR, HSKSOR and FSKSOR methods are also presented. Some numerical tests were carried out to illustrate that the 4HSEGKSOR method is superior to HSKSOR and FSKSOR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ionescu C, Lopes A, Copot D, Machado JAT, Bates JHT (2017) The role of fractional calculus in modeling biological phenomena: a review. Commun Nonlinear Sci Numer Simul 51:141–159

    Article  MathSciNet  Google Scholar 

  2. Kumar D, Rai KN (2017) Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy. J Therm Biol 67:49–58

    Article  Google Scholar 

  3. Khan NA, Razzaq OA, Mondal SP, Rubbab Q (2019) Fractional order ecological system for complexities of interacting species with harvesting threshold in imprecise environment. Adv Differ Equ 2019(1):405

    Article  MathSciNet  Google Scholar 

  4. Nadzharyan TA, Sorokin VV, Stepanov GV, Bogolyubov AN, Kramarenko EYu (2016) A fractional calculus approach to modeling rheological behavior of soft magnetic elastomers. Polymer 92:179–188

    Article  Google Scholar 

  5. Luc NH, Huynh LN, Tuan NH (2019) On a backward problem for inhomogeneous time-fractional diffusion equations. Comput Math Appl 78(5):1317–1333

    Article  MathSciNet  Google Scholar 

  6. Tuan NH, Ngoc TB, Tatar S (2018) Recovery of the solute concentration and dispersion flux in an inhomogeneous time fractional diffusion equation. J Comput Appl Math 342:96–118

    Article  MathSciNet  Google Scholar 

  7. Zheng G-H (2014) Recover the solute concentration from source measurement and boundary data. Inverse Probl Sci Eng 23(7):1199–1221

    Article  MathSciNet  Google Scholar 

  8. Tasbozan O, Esen A, Yagmurlu NM, Ucar Y (2013) A numerical solution to fractional diffusion equation for force-free case. Abstract Appl Anal, Article ID 187383

    Google Scholar 

  9. Badr M, Yazdani A, Jafari H (2018) Stability of a finite volume element method for the time-fractional advection-diffusion equation. Numer Methods Partial Differ Equ 34(5):1459–1471

    Article  MathSciNet  Google Scholar 

  10. Liu F, Zhuang P, Turner I, Burrage K, Anh V (2014) A new fractional finite volume method for solving the fractional diffusion equation. Appl Math Model 38:3871–3878

    Article  MathSciNet  Google Scholar 

  11. Saw V, Kumar S (2020) Collocation method for time fractional diffusion equation based on the Chebyshev polynomials of second kind. Int J Appl Comput Math 6(4):117

    Article  MathSciNet  Google Scholar 

  12. Akram T, Abbas M, Ismail AI (2019) An extended cubic B-spline collocation scheme for time fractional sub-diffusion equation. AIP Conf Proc 2184:060017

    Article  Google Scholar 

  13. Yu H, Wu B, Zhang D (2019) The Laguerre-Hermite spectral methods for the time-fractional sub-diffusion equations on unbounded domains. Numer Algorithms 82(4):1221–1250

    Article  MathSciNet  Google Scholar 

  14. Guo C, Zhao F (2019) Numerical methods for the time fractional diffusion equation. J Phys Conf Ser 1324(1):012014

    Article  Google Scholar 

  15. Hong EJ, Saudi A, Sulaiman J (2017) Numerical analysis of the explicit group iterative method for solving poisson image blending problem. Int J Imaging Robot 17(4):15–24

    Google Scholar 

  16. Saudi A, Sulaiman J (2016) Path planning simulation using harmonic potential fields through four point-EDGSOR method via 9-point Laplacian. J Teknol 78(8–2):12–24

    Google Scholar 

  17. Dahalan AA, Muthuvalu MS, Sulaiman J (2013) Numerical solutions of two-point fuzzy boundary value problem using half-sweep alternating group explicit method. AIP Conf Proc 1557:103–107

    Article  Google Scholar 

  18. Akhir MKM, Othman M, Sulaiman J, Majid ZA, Suleiman M (2011) Numerical solution of Helmholtz equation using a new four-point EGMSOR iterative method. Appl Math Sci 5(77–80):3991–4004

    Google Scholar 

  19. Rahman R, Mat Ali NA, Sulaiman J, Muhiddin FA (2019) Block iterative method for the solution of fractional two-point boundary value problems. J Phys Conf Ser 1358(1):012053

    Article  Google Scholar 

  20. Rahman R, Ali NAM, Sulaiman J, Muhiddin FA (2019) Application of the half-sweep EGSOR iteration for two-point boundary value problems of fractional order. Adv Sci Technol Eng Syst 4(2):237–243

    Article  Google Scholar 

  21. Youssef IK (2012) On the successive over relaxation method. J Math Stat 8(2):176–184

    Article  Google Scholar 

  22. Suardi MN, Radzuan N, Sulaiman J (2017) Cubic B-spline solution of two-point boundary value problem using HSKSOR iteration. Glob J Pure Appl Math 13(11):7921–7934

    Google Scholar 

  23. Radzuan NZFM, Suardi MN, Sulaiman J (2017) KSOR iterative method with quadrature scheme for solving system of Fredholm integral equations of second kind. J Fundam Appl Sci 9(5S)

    Google Scholar 

  24. Podlubny I (1999) Fractional differential equations. Academic Press, Cambridge

    Google Scholar 

  25. Zahra WK, Elkholy SM (2013) Cubic spline solution of fractional Bagley-Torvik equation. Electron J Math Anal Appl 1(2):230–241

    MATH  Google Scholar 

  26. Young DM (1971) Iterative solution of large linear systems. Academic Press, New York

    MATH  Google Scholar 

  27. Hadjidimos A (2000) Successive over relaxation (SOR) and related methods. J Comput Appl Math 123(1–2):177–199

    Article  MathSciNet  Google Scholar 

  28. Muhiddin FA, Sulaiman J, Sunarto A (2019) MKSOR iterative method for the Grünwald implicit finite difference solution of one-dimensional time-fractional parabolic equations. AIP Conf Proc 2138:030026

    Article  Google Scholar 

  29. Uddin M, Haq S (2011) RBF’s approximation method for time fractional partial differential equations. Commun Nonlinear Sci Numer Simul 16(11):4208–4214

    Article  MathSciNet  Google Scholar 

  30. Jiang Y, Ma J (2011) High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math 235(11):3285–3290

    Article  MathSciNet  Google Scholar 

  31. Ma Y (2014) Two implicit finite difference method for time fractional diffusion equation with source term. J Appl Math Bioinf 4(2):125–145

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatihah Anas Muhiddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muhiddin, F.A., Sulaiman, J., Sunarto, A. (2021). Solving Time-Fractional Parabolic Equations with the Four Point-HSEGKSOR Iteration. In: Alfred, R., Iida, H., Haviluddin, H., Anthony, P. (eds) Computational Science and Technology. Lecture Notes in Electrical Engineering, vol 724. Springer, Singapore. https://doi.org/10.1007/978-981-33-4069-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4069-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4068-8

  • Online ISBN: 978-981-33-4069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics