Skip to main content

Urban Heat Island, Contributing Factors, Public Responses and Mitigation Approaches in the Tropical Context of Malaysia

  • Chapter
  • First Online:
Urban Heat Island (UHI) Mitigation

Abstract

Urban Heat Island (UHI) is a notable thermal phenomenon of any tropical city in relation to increased urbanization. It records a positive urban thermal balance due to higher air temperatures in the densely built areas compared to the rural or sub-urban peripheries under the same climate conditions. The rapid infrastructure development in high-risk areas of tropical cities will be exposing the urban population to extreme heat. As predicted by International Panel on Climate Change (IPCC) climate change scenario, some of the cities in Southeast Asia may be as much as 4 °C warmer by 2050. Being a Southeast Asian country, this would be a consequential threat to the capital cities of Malaysia which suffered inevitable territorial urban development that manifested into formation of severe UHIs with an average gain in surface temperature of 8.47 °C between 1997 and 2013. The increasing surface temperature is mainly associated with the reduction in vegetation cover, open burning, forest fires, land use changes, land clearing, industrial and traffic emissions. Besides, it also exhibits the potential to emerge as one of the public health menace with reduced outdoor thermal comfort levels, heat exhaustions, heat cramps and respiratory ailments among the tropical city dwellers in various urban settings. To overcome this, a number of mitigation approaches such as increase of vegetation cover, replacement of cooling pavement materials and architectural innovations are studied as viable UHI remedies in the context of Malaysia. In addition, target driven assessments are intended to meet the city population’s health needs to assist in designing initiatives to effectively reduce UHI effects. In line with these, this chapter would provide the state-of-art of UHI, known contributing factors and impacts, community needs and other mitigation efforts targeting at urban temperature reductions via case study approaches in the context of Malaysia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.U. Nations (2018) United Nations Population Division, New York, World Urbanization Prospects: The 2018 Revision. Last accessed May 2018

    Google Scholar 

  2. Jamei Y, Rajagopalan P, Sun QC (2019) Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Sci Total Environ 659:1335–1351

    Article  CAS  Google Scholar 

  3. Qi JD, He BJ, Wang M, Zhu J, Fu WC (2019) Do grey infrastructures always elevate urban temperature? No, utilizing grey infrastructures to mitigate urban heat island effects. Sustain Cities Soc 46:101392

    Article  Google Scholar 

  4. Li K, Chen Y, Wang M, Gong A (2019) Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China. Sci Total Environ 669:229–247

    Article  CAS  Google Scholar 

  5. Yang Q, Huang X, Tang Q (2019) The footprint of urban heat island effect in 302 Chinese cities: temporal trends and associated factors. Sci Total Environ 655:652–662

    Article  CAS  Google Scholar 

  6. Gunawardena K, Kershaw T, Steemers K (2019) Simulation pathway for estimating heat island influence on urban/suburban building space-conditioning loads and response to facade material changes. Build Environ 150:195–205

    Google Scholar 

  7. Rizvi SH, Alam K, Iqbal MJ (2019) Spatio-temporal variations in urban heat island and its interaction with heat wave. J Atmos Sol-Terr Phys 185:50–57

    Article  Google Scholar 

  8. Yusuf YA, Pradhan B, Idrees MO (2014) Spatio-temporal assessment of urban heat island effects in Kuala Lumpur Metropolitan city using landsat images. J Indian Soc Remote Sens 42(4):829–837

    Google Scholar 

  9. Ramakreshnan L, Aghamohammadi N, Fong C, Ghaffarianhoseini A, Ghaffarianhoseini A, Wong L, Hassan N, Sulaiman N (2018) A critical review of Urban Heat Island phenomenon in the context of Greater Kuala Lumpur, Malaysia. Sustain Cities Soc 39:99–113

    Google Scholar 

  10. Davis MP, Reimann GP, Ghazali M (2005) Reducing urban heat island effect with thermal comfort housing and honeycomb townships. Paper presented at sustainable building South East Asia conference, Malaysia (2005, April). Retrieved from https://www.irbnet.de/daten/iconda/CIB_DC23495.pdf

  11. Sultana S, Satyanarayana ANV (2020) Assessment of urbanisation and urban heat island intensities using landsat imageries during 2000–2018 over a sub-tropical Indian City. Sustain Cities Soc 52:101846

    Article  Google Scholar 

  12. Cao C, Lee XH, Liu SD, Schultz N, Xiao W, Zhang M, Zhao L (2016) Urban heat islands in China enhanced by haze pollution. Nat Commun 7:7

    Article  Google Scholar 

  13. He BJ, Zhao ZQ, Shen LD, Wang HB, Li LG (2019) An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustain Cities Soc 44:416–427

    Article  Google Scholar 

  14. Jato-Espino D (2019) Spatiotemporal statistical analysis of the Urban Heat Island effect in a Mediterranean region. Sustain Cities Soc 46:101427

    Article  Google Scholar 

  15. Ramakreshnan L, Aghamohammadi N, Fong CS, Ghaffarianhoseini A, Wong LP, Sulaiman NM (2019) Empirical study on temporal variations of canopy-level Urban Heat Island effect in the tropical city of Greater Kuala Lumpur. Sustain Cities Soc 44:748–762

    Article  Google Scholar 

  16. Huang Y, Yuan M, Lu Y (2019) Spatially varying relationships between surface urban heat islands and driving factors across cities in China. Environ Plan B: Urban Anal City Sci 46(2):377–394

    Google Scholar 

  17. Levermore G, Parkinson J (2019) The urban heat island of London, an empirical model. Build Serv Eng Res Technol 40(3):290–295

    Article  Google Scholar 

  18. Ramakreshnan L, Aghamohammadi N, Fong CS, Ghaffarianhoseini A, Wong LP, Noor RM, Hanif NR, Aziz WNAWA, Sulaiman NM, Hassan N (2019) A qualitative exploration on the awareness and knowledge of stakeholders towards Urban Heat Island phenomenon in Greater Kuala Lumpur: critical insights for urban policy implications. Habitat Int 86:28–37

    Google Scholar 

  19. Mika J, Forgo P, Lakatos L, Olah AB, Rapi S, Utasi Z (2018) Impact of 1.5 K global warming on urban air pollution and heat island with outlook on human health effects. Curr Opin Environ Sustain 30:151–159

    Article  Google Scholar 

  20. Agarwal M, Tandon A (2010) Modeling the effects of urban heat islands generated mesoscale wind on air pollution dispersion in a patchy atmosphere. Nat Resour Model 23(1):48–78

    Article  Google Scholar 

  21. Wang Y, Du H, Xu Y, Lu D, Wang X, Guo Z (2018) Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci Total Environ 631:921–933

    Article  CAS  Google Scholar 

  22. Huang LM, Li HT, Zha DH, Zhu JY (2008) A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China. Build Environ 43(1):7–17

    Article  Google Scholar 

  23. Salata F, Golasi I, Petitti D, de Lieto Vollaro E, Coppi M, de Lieto Vollaro A (2017) Relating microclimate, human thermal comfort and health during heat waves: an analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain Cities Soc 30:79–96

    Article  Google Scholar 

  24. Du HY, Wang DD, Wang YY, Zhao XL, Qin F, Jiang H, Cai YL (2016) Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci Total Environ 571:461–470

    Article  CAS  Google Scholar 

  25. Varentsov M, Konstantinov P, Baklanov A, Esau I, Miles V, Davy R (2018) Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city. Atmos Chem Phys 18(23):17573–17587

    Article  CAS  Google Scholar 

  26. Wu H, Wang T, Wang QG, Riemer N, Cao Y, Liu C, Ma CX, Xie X (2019) Relieved air pollution enhanced urban heat island intensity in the Yangtze River Delta. China Aerosol Air Qual Res 19(12):2683–2696

    Article  CAS  Google Scholar 

  27. Ford HL, Ravelo AC (2019) Estimates of pliocene tropical pacific temperature sensitivity to radiative greenhouse gas forcing. Paleoceanogr Paleoclimatol 34(1):2–15

    Article  Google Scholar 

  28. Sani S (1972) Some aspects of urban microclimate of Kuala Lumpur, West Malaysia. Akademika 1:85–92

    Google Scholar 

  29. Sani S (1984) Urban development and changing patterns of night-time temperatures in the Kuala Lumpur, Petaling Jaya area, Malaysia. J Teknologi 5:27–36

    Google Scholar 

  30. Elsayed IS (2012) A study on the urban heat island of the city of Kuala Lumpur, Malaysia. J King Abdulaziz Univ 23(2):121

    Google Scholar 

  31. Shaharuddin A, Noorazuan MH, Takeuchi W, Noraziah A (2014) The effects of urban heat islands on human comfort: a case of Klang Valley Malaysia. Glob J Adv Pure Appl Sci 2:1–8

    Google Scholar 

  32. Shaharuddin A, Noorazuan MH, Yaakob MJ (2009) Fenomena Pulau Haba Bandar dan isu alam sekitar di Bandaraya Kuala Lumpur. Geografia: Malaysian J Soc Space 5(3):57–67

    Google Scholar 

  33. Hashim N, Ahmad A, Abdullah M (2007) Mapping Urban Heat Island phenomenon, remote sensing approach. J Inst Eng Malaysia 68(3):25–30

    Google Scholar 

  34. Morris KI, Aekbal Salleh S, Chan A, Ooi MCG, Abakr YA, Oozeer MY, Duda M (2015) Computational study of urban heat island of Putrajaya, Malaysia. Sustain Cities Soc 19:359–372

    Article  Google Scholar 

  35. Morris KI, Chan A, Salleh SA, Ooi MCG, Oozeer MY, Abakr YA (2016) Numerical study on the urbanisation of Putrajaya and its interaction with the local climate, over a decade. Urban Clim 16:1–24

    Article  Google Scholar 

  36. Buyadi SNA, Mohd WMNW, Misni A (2013) Green spaces growth impact on the urban microclimate. Procedia-Soc Behav Sci 105:547–557

    Article  Google Scholar 

  37. Buyadi SNA, Mohd WMNW, Misni A (2013) Impact of land use changes on the surface temperature distribution of area surrounding the National Botanic Garden, Shah Alam. Procedia-Soc Behav Sci 101:516–525

    Article  Google Scholar 

  38. Salleh SA, Latif ZA, Mohd WMNW, Chan A (2013) Factors contributing to the formation of an urban heat island in Putrajaya, Malaysia. Procedia-Soc Behav Sci 105:840–850

    Article  Google Scholar 

  39. Thani SKSO, Mohamad NHN, Abdullah SMS (2013) The influence of urban landscape morphology on the temperature distribution of Hot-Humid Urban Centre. Procedia-Soc Behav Sci 85:356–367

    Article  Google Scholar 

  40. Fong CS, Aghamohammadi N, Ramakreshnan L, Sulaiman NM, Mohammadi P (2019) Holistic recommendations for future outdoor thermal comfort assessment in tropical Southeast Asia: a critical appraisal. Sustain Cities Soc 46:101428

    Article  Google Scholar 

  41. Doan QV, Kusaka H, Ho QB (2016) Impact of future urbanization on temperature and thermal comfort index in a developing tropical city: Ho Chi Minh City. Urban Clim 17:20–31

    Article  Google Scholar 

  42. Wong LP, Alias H, Aghamohammadi N, Aghazadeh S, Sulaiman NMN (2017) Urban heat island experience, control measures and health impact: a survey among working community in the city of Kuala Lumpur. Sustain Cities Soc 35:660–668

    Article  Google Scholar 

  43. Nasir RA, Ahmad SS, Zain-Ahmed A, Ibrahim N (2015) Adapting human comfort in an Urban Area: the role of tree shades towards urban regeneration. Procedia-Soc Behav Sci 170:369–380

    Article  Google Scholar 

  44. Buyadi SNA, Mohd WMNW, Misni A (2014) Quantifying green space cooling effects on the urban microclimate using Remote Sensing and GIS techniques. In: FIG Congress 2014 engaging the challenges—enhancing the relevance, Kuala Lumpur, Malaysia, 16–21 June 2014

    Google Scholar 

  45. Ahmed AQ, Ossen DR, Jamei E, Manaf NA, Said I, Ahmad MH (2014) Urban surface temperature behaviour and heat island effect in a tropical planned city. Theoret Appl Climatol 119(3–4):493–514

    Google Scholar 

  46. Benrazavi RS, Binti Dola K, Ujang N, Sadat Benrazavi N (2016) Effect of pavement materials on surface temperatures in tropical environment. Sustain Cities Soc 22:94–103

    Google Scholar 

  47. Rajagopalan P, Lim KC, Jamei E (2014) Urban heat island and wind flow characteristics of a tropical city. Sol Energy 107:159–170

    Article  Google Scholar 

  48. Sanusi ANZ, Shao L, Zamri AAA (2014) Seeking underground for potential heat sink in Malaysia for Earth Air Heat Exchanger (EAHE) application. Aust J Basic Appl Sci 8(8):54–57

    Google Scholar 

  49. Oke TR (1988) The urban energy balance. Prog Phys Geogr 12(4):471–508

    Article  Google Scholar 

  50. Chatzidimitriou A, Yannas S (2017) Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustain Cities Soc 33:85–101

    Article  Google Scholar 

  51. Qaid A, Bin Lamit H, Ossen DR, Shahminan RNR (2016) Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy Build 133:577–595

    Google Scholar 

  52. Memon RA, Leung DYC, Liu CH (2009) An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos Res 94(3):491–500

    Article  Google Scholar 

  53. Ahmed AQ, Ossen DR, Jamei E, Abd Manaf N, Said I, Ahmad MH (2015) Urban surface temperature behaviour and heat island effect in a tropical planned city. Theor Appl Climatol 119(3–4):493–514

    Google Scholar 

  54. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26

    Article  Google Scholar 

  55. Oke TR (1981) Canyon geometry and the nocturnal urban heat-island—comparison of scale model and field observations. J Climatol 1(3):237

    Article  Google Scholar 

  56. Wang W, Ng E, Yuan C, Raasch S (2017) Large-eddy simulations of ventilation for thermal comfort—a parametric study of generic urban configurations with perpendicular approaching winds. Urban Clim 20:202–227

    Article  Google Scholar 

  57. Hwang RL, Lin TP, Matzarakis A (2011) Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build Environ 46(4):863–870

    Article  Google Scholar 

  58. Erell E, Pearlmutter D, Williamson T (2012) Urban microclimate: designing the spaces between buildings. Routledge

    Google Scholar 

  59. Johansson E, Emmanuel R (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51(2):119–133

    Article  Google Scholar 

  60. Pataki DE, McCarthy HR, Litvak E, Pincetl S (2011) Transpiration of urban forests in the Los Angeles metropolitan area. Ecol Appl 21(3):661–677

    Article  Google Scholar 

  61. Byrne LB, Bruns MA, Kim KC (2008) Ecosystem properties of urban land covers at the aboveground–belowground interface. Ecosystems 11(7):1065–1077

    Article  Google Scholar 

  62. Vailshery LS, Jaganmohan M, Nagendra H (2013) Effect of street trees on microclimate and air pollution in a tropical city. Urban For Urban Green 12(3):408–415

    Article  Google Scholar 

  63. Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the University of Malaya as this study is supported by University of Malaya Grand Challenges Research Grant (GC002A-15SUS), University of Malaya Living Lab Grant Programme (UMLL038-18SUS) and University of Malaya Partnership Grant (RK003-2017).

Competing Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Aghamohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aghamohammadi, N., Ramakreshnan, L., Fong, C.S., Sulaiman, N.M. (2021). Urban Heat Island, Contributing Factors, Public Responses and Mitigation Approaches in the Tropical Context of Malaysia. In: Enteria, N., Santamouris, M., Eicker, U. (eds) Urban Heat Island (UHI) Mitigation. Advances in 21st Century Human Settlements. Springer, Singapore. https://doi.org/10.1007/978-981-33-4050-3_5

Download citation

Publish with us

Policies and ethics