Skip to main content

Revisiting Urban Heat Island Effects in Coastal Regions: Mitigation Strategies for the Megacity of Istanbul

  • Chapter
  • First Online:
Urban Heat Island (UHI) Mitigation

Abstract

Throughout history, the city of Istanbul has been an important settlement for different civilizations with its geographical location connecting two continents. This metropolis with a population of over 16 million has more than 50% of total economic activity for Turkey. Especially in the last 50 years, the city has been under a catastrophic anthropogenic pressure because of its historical, geographical, and economic attractiveness. These pressures on the city caused some environmental problems due to planning. Some of these problems are intensive urbanization; increase in impervious surface, pollution, traffic, and Urban Heat Island (UHI). The impact of UHI, as a result of wrong urban planning activities causes several adversities in terms of human health, energy efficiency, and ecological sustainability. Factors such as land use/cover (LULC) changes, canyon effect, surface covering material selection, intensive energy usage are effective in the emergence of the UHI effect. In recent years, increasing environmental awareness, international regulations, and developments in landscape planning have led to the emergence of planning strategies to reduce UHI impact. The existence of the UHI effect in Istanbul has been demonstrated and modeled in previous studies. Accordingly, the presence of the UHI effect was identified in both the European and Asian study areas. In the statistical modeling studies, it has been shown that the UHI effect is mainly due to changes in land cover usage components, urban impervious surfaces, green cover, bare soil, and agricultural areas. In this study, various scenarios of land cover elements, which are stated to reduce the UHI effect in Asian and European study areas of Istanbul, have been created. For this purpose, green corridors that are designed in accordance with the urban texture of Istanbul are proposed. As a result of the analyses, UHI intensity mitigation was observed in the European and Asian study regions above 2.5 °C on average. As a result, in addition to land cover usage changes, increasing water surfaces, the use of effective wind corridors, avoiding high buildings, and preferring reflective coating surface materials in landscape design and planning activities are considered to be of utmost importance in terms of UHI reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations (2018) Department of economic and social affairs, population division world urbanization prospects 2018, Highlights (ST/ESA/SER.A/421). New York

    Google Scholar 

  2. Howard L (1833) The climate of London: deduced from meteorological observations, made at different places in the neighbourhood of the metropolis, vol 1

    Google Scholar 

  3. Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49710845502

    Article  Google Scholar 

  4. Streutker DR (2003) Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens Environ. https://doi.org/10.1016/S0034-4257(03)00007-5

  5. Alcoforado MJ, Andrade H (2008) Global warming and the urban heat island. Urban ecology. Springer, Boston, pp 249–262

    Chapter  Google Scholar 

  6. Grady Dixon P, Mote TL (2003) Patterns and causes of Atlanta’s urban heat island-initiated precipitation. J Appl Meteorol. https://doi.org/10.1175/1520-0450(2003)042%3c1273:PACOAU%3e2.0.CO;2

    Article  Google Scholar 

  7. Santamouris M, Cartalis C, Synnefa A, Kolokotsa D (2015) On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—a review. Energy Build. https://doi.org/10.1016/j.enbuild.2014.09.052

    Article  Google Scholar 

  8. Hondula DM, Georgescu M, Balling RC (2014) Challenges associated with projecting urbanization-induced heat-related mortality. Sci Total Environ 490:538–544. https://doi.org/10.1016/j.scitotenv.2014.04.130

    Article  CAS  Google Scholar 

  9. Akbari H, Kolokotsa D (2016) Three decades of urban heat islands and mitigation technologies research. Energy Build. https://doi.org/10.1016/j.enbuild.2016.09.067

    Article  Google Scholar 

  10. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. https://doi.org/10.1002/joc.859

    Article  Google Scholar 

  11. Deilami K, Kamruzzaman M, Liu Y (2018) Urban heat island effect: a systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int J Appl Earth Obs Geoinf 67:30–42. https://doi.org/10.1016/j.jag.2017.12.009

    Article  Google Scholar 

  12. Dihkan M, Karsli F, Guneroglu N, Guneroglu A (2018) Evaluation of urban heat island effect in Turkey. Arab J Geosci 11:186. https://doi.org/10.1007/s12517-018-3533-3

    Article  Google Scholar 

  13. Memon RA, Leung DYC, Chunho L (2008) A review on the generation, determination and mitigation of urban heat island. J Environ Sci (China) 20:120–128. https://doi.org/10.1016/s1001-0742(08)60019-4

    Article  Google Scholar 

  14. Pradhan S, Pattanasri N (2009) Two-dimensional retrieval in synchronized media streams. In: United States environmental protection agency (EPA), pp 236–240

    Google Scholar 

  15. Giridharan R, Ganesan S, Lau SSY (2004) Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy Build. https://doi.org/10.1016/j.enbuild.2003.12.016

    Article  Google Scholar 

  16. Shudo H, Sugiyama J, Yokoo N, Oka T (1997) A study on temperature distribution influenced by various land uses. Energy Build. https://doi.org/10.1016/s0378-7788(96)01035-3

    Article  Google Scholar 

  17. Weng Q (2003) Fractal analysis of satellite-detected urban heat island effect. Photogramm E. Remote Sens

    Google Scholar 

  18. Oke TR (1987) Boundary layer climates, 2nd edn.

    Google Scholar 

  19. Asaeda T, Ca VT (1993) The subsurface transport of heat and moisture and its effect on the environment: a numerical model. Boundary-Layer Meteorol 65:159–179. https://doi.org/10.1007/BF00708822

    Article  Google Scholar 

  20. Sailor DJ, Fan H (2002) Modeling the diurnal variability of effective albedo for cities. Atmos Environ. https://doi.org/10.1016/S1352-2310(01)00452-6

    Article  Google Scholar 

  21. Oke TR, Cleugh HA (1987) Urban heat storage derived as energy balance residuals. Boundary-Layer Meteorol 39:233–245. https://doi.org/10.1007/BF00116120

    Article  Google Scholar 

  22. Grimmond CSB, Oke TR (1991) An evapotranspiration-interception model for urban areas. Water Resour Res 27:1739–1755. https://doi.org/10.1029/91WR00557

    Article  Google Scholar 

  23. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89:467–483. https://doi.org/10.1016/j.rse.2003.11.005

    Article  Google Scholar 

  24. Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25:99–103. https://doi.org/10.1016/S0378-7788(96)00999-1

    Article  Google Scholar 

  25. Spronken-Smith RA, Oke TR (1998) The thermal regime of urban parks in two cities with different summer climates. Int J Remote Sens 19:2085–2104. https://doi.org/10.1080/014311698214884

    Article  Google Scholar 

  26. Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban environment: microclimatic analysis and benefits. Energy Build 35:69–76. https://doi.org/10.1016/S0378-7788(02)00081-6

    Article  Google Scholar 

  27. Rao PS, Gavane AG, Ankam SS, Ansari MF, Pandit VI, Nema P (2004) Performance evaluation of a green belt in a petroleum refinery: a case study. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2004.06.013

    Article  Google Scholar 

  28. Magee N, Curtis J, Wendler G (1999) The urban heat island effect at Fairbanks. Theor Appl Climatol, Alaska. https://doi.org/10.1007/s007040050109

    Book  Google Scholar 

  29. Hogan AW, Ferrick MG (1998) Observations in nonurban heat islands. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1998)037%3c0232:OINHI%3e2.0.CO;2

    Article  Google Scholar 

  30. Karl TR, Diaz HF, Kukla G (1988) Urbanization: its detection and effect in the United States climate record. J Clim 1:1099–1123. https://doi.org/10.1175/1520-0442(1988)001%3c1099:UIDAEI%3e2.0.CO;2

    Article  Google Scholar 

  31. Nunez M, Oke TR (1977) The energy balance of an urban canyon. J Appl Meteorol 16:11–19. https://doi.org/10.1175/1520-0450(1977)016%3c0011:TEBOAU%3e2.0.CO;2

    Article  Google Scholar 

  32. Voogt JA, Oke TR (1991) Validation of an urban canyon radiation model for nocturnal long-wave fluxes. Boundary-Layer Meteorol. https://doi.org/10.1007/BF00118866

    Article  Google Scholar 

  33. Arnfield AJ, Grimmond CSB (1998) An urban canyon energy budget model and its application to urban storage heat flux modeling. Energy Build 27:61–68. https://doi.org/10.1016/S0378-7788(97)00026-1

    Article  Google Scholar 

  34. Arnfield AJ (2000) A simple model of urban canyon energy budget and its validation. Phys Geogr. https://doi.org/10.1080/02723646.2000.10642712

    Article  Google Scholar 

  35. Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Edward Arnold, London. https://doi.org/10.1016/B978-0-12-386910-4.00026-3

  36. Hare FK, Landsberg HE (1983) The urban climate. Geogr Rev 73:242. https://doi.org/10.2307/214663

    Article  Google Scholar 

  37. Kidder SQ, Essenwanger OM (1995) The effect of clouds and wind on the difference in nocturnal cooling rates between urban and rural areas. J Appl Meteorol 34:2440–2448. https://doi.org/10.1175/1520-0450(1995)034%3c2440:TEOCAW%3e2.0.CO;2

    Article  Google Scholar 

  38. Yoshikado H (1990) Vertical structure of the sea breeze penetrating through a large urban complex. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1990)029%3c0878:VSOTSB%3e2.0.CO;2

    Article  Google Scholar 

  39. Estournel C, Vehil R, Guedalia D, Fontan J, Druilhet A (1983) Observations and modeling of downward radiative fluxes (solar and infrared) in urban/rural areas. J Clim Appl Meteorol 22:134–142. https://doi.org/10.1175/1520-0450(1983)022%3c0134:OAMODR%3e2.0.CO;2

    Article  Google Scholar 

  40. Stanhill G, Kalma JD (1995) Solar dimming and urban heating at Hong Kong. Int J Climatol 15:933–941. https://doi.org/10.1002/joc.3370150807

    Article  Google Scholar 

  41. Rouse WR, Noad D, McCutcheon J (1973) Radiation, temperature and atmospheric emissivities in a polluted urban atmosphere at Hamilton, Ontario. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1973)012%3c0798:rtaaei%3e2.0.co;2

  42. Sailor DJ, Lu L (2004) A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos Environ 38:2737–2748. https://doi.org/10.1016/j.atmosenv.2004.01.034

    Article  CAS  Google Scholar 

  43. Schmid HP, Cleugh HA, Grimmond CSB, Oke TR (1991) Spatial variability of energy fluxes in suburban terrain. Boundary-Layer Meteorol. https://doi.org/10.1007/BF00183956

    Article  Google Scholar 

  44. Khan SM, Simpson RW (2001) Effect of a heat island on the meteorology of a complex urban airshed. Boundary-Layer Meteorol 100:487–506. https://doi.org/10.1023/A:1019284332306

    Article  Google Scholar 

  45. Ichinose T, Shimodozono K, Hanaki K (1999) Impact of anthropogenic heat on urban climate in Tokyo. Atmos Environ 33:3897–3909. https://doi.org/10.1016/S1352-2310(99)00132-6

    Article  CAS  Google Scholar 

  46. Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84:3–22. https://doi.org/10.1007/s00704-005-0140-5

    Article  Google Scholar 

  47. Voogt J, Oke T (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384. https://doi.org/10.1016/S0034-4257(03)00079-8

    Article  Google Scholar 

  48. Rajasekar U, Weng Q (2009) Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM+ imagery. Int J Remote Sens 30:3531–3548. https://doi.org/10.1080/01431160802562289

    Article  Google Scholar 

  49. Anniballe R, Bonafoni S, Pichierri M (2014) Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sens Environ. https://doi.org/10.1016/j.rse.2014.05.005

    Article  Google Scholar 

  50. Giridharan R, Lau SSY, Ganesan S, Givoni B (2007) Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Build Environ. https://doi.org/10.1016/j.buildenv.2006.09.011

    Article  Google Scholar 

  51. Balázs B, Unger J, Gál T, Sümeghy Z, Geiger J, Szegedi S (2009) Simulation of the mean urban heat island using 2D surface parameters: empirical modelling, verification and extension. Meteorol Appl. https://doi.org/10.1002/met.116

    Article  Google Scholar 

  52. Eliasson I (1996) Urban nocturnal temperatures, street geometry and land use. Atmos Environ

    Google Scholar 

  53. Oke TR (1973) City size and the urban heat island. Atmos Environ. https://doi.org/10.1016/0004-6981(73)90140-6

    Article  Google Scholar 

  54. Bärring L, Mattsson JO, Lindqvist S (1985) Canyon geometry, street temperatures and urban heat island in malmö, sweden. J Climatol. https://doi.org/10.1002/joc.3370050410

    Article  Google Scholar 

  55. Goh KC, Chang CH (1999) The relationship between height to width ratios and the heat island intensity at 22:00 h for Singapore. Int J Climatol 19:1011–1023. https://doi.org/10.1002/(SICI)1097-0088(199907)19:9%3c1011:AID-JOC411%3e3.0.CO;2-U

    Article  Google Scholar 

  56. Svensson MK, Eliasson I, Holmer B (2002) A GIS based empirical model to simulate air temperature variations in the Göteborg urban area during the night. Clim Res. https://doi.org/10.3354/cr022215

    Article  Google Scholar 

  57. Alcoforado M-J, Andrade H (2006) Nocturnal urban heat island in Lisbon (Portugal): main features and modelling attempts. Theor Appl Climatol 84:151–159. https://doi.org/10.1007/s00704-005-0152-1

    Article  Google Scholar 

  58. László E, Szegedi S (2015) A multivariate linear regression model of mean maximum urban heat island: a case study of Beregszász (Berehove), Ukraine. Idojaras 119:409–423

    Google Scholar 

  59. Vicente-Serrano SM, Cuadrat-Prats JM, Saz-Sánchez MA (2005) Spatial patterns of the urban heat island in Zaragoza (Spain). Clim Res. https://doi.org/10.3354/cr030061

    Article  Google Scholar 

  60. Sherafati SA, Saradjian MR, Niazmardi S (2013) Urban heat island growth modeling using artificial neural networks and support vector regression: a case study of Tehran, Iran. ISPRS—Int Arch Photogramm Remote Sens Spat Inf Sci XL-1/W3:399–403. https://doi.org/10.5194/isprsarchives-XL-1-W3-399-2013

  61. Zhou J, Zhou J, Chen Y, Wang J, Zhan W, Wang J (2011) Maximum nighttime urban heat island (UHI) intensity simulation by integrating remotely sensed data and meteorological observations. IEEE J Sel Top Appl Earth Obs Remote Sens. https://doi.org/10.1109/JSTARS.2010.2070871

    Article  Google Scholar 

  62. Szymanowski M, Kryza M (2012) Local regression models for spatial interpolation of urban heat island-an example from Wrocław. Theor Appl Climatol, SW Poland. https://doi.org/10.1007/s00704-011-0517-6

    Book  Google Scholar 

  63. Carlson TN, Traci Arthur S (2000) The impact of land use—land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Glob Planet Change 25:49–65. https://doi.org/10.1016/S0921-8181(00)00021-7

    Article  Google Scholar 

  64. Unger J (2006) Modelling of the annual mean maximum urban heat island using 2D and 3D surface parameters. Clim Res 30:215–226. https://doi.org/10.3354/cr030215

    Article  Google Scholar 

  65. Chun B, Guldmann JM (2014) Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc Urban Plan. https://doi.org/10.1016/j.landurbplan.2014.01.016

    Article  Google Scholar 

  66. Sailor DJ, Elley TB, Gibson M (2012) Exploring the building energy impacts of green roof design decisions—a modeling study of buildings in four distinct climates. J Build Phys 35:372–391. https://doi.org/10.1177/1744259111420076

    Article  Google Scholar 

  67. Jim CY, He H (2010) Coupling heat flux dynamics with meteorological conditions in the green roof ecosystem. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2010.04.018

    Article  Google Scholar 

  68. Tsang SW, Jim CY (2011) Theoretical evaluation of thermal and energy performance of tropical green roofs. Energy 36:3590–3598. https://doi.org/10.1016/j.energy.2011.03.072

    Article  Google Scholar 

  69. Bonan G (2015) Ecological climatology: concepts and applications. Cambridge Univ Press. https://doi.org/10.21425/f58433332

  70. Takebayashi H, Moriyama M (2007) Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build Environ 42:2971–2979. https://doi.org/10.1016/j.buildenv.2006.06.017

    Article  Google Scholar 

  71. Gartland L (2012) Heat islands: understanding and mitigating heat in urban areas

    Google Scholar 

  72. Kleerekoper L, van Esch M, Salcedo TB (2012) How to make a city climate-proof, addressing the urban heat island effect. Resour Conserv Recycl 64:30–38. https://doi.org/10.1016/j.resconrec.2011.06.004

    Article  Google Scholar 

  73. Gago EJ, Roldan J, Pacheco-Torres R, Ordóñez J (2013) The city and urban heat islands: a review of strategies to mitigate adverse effects. Renew Sustain Energy Rev

    Google Scholar 

  74. Wong NH, Jusuf SK (2013) Urban heat island and mitigation strategies at city and building level. In: Hien Wong N, Kardinal Jusuf S (eds) Advances in the development of cool materials for the built environment. Bentham Science Publishers, pp 3–32

    Google Scholar 

  75. Nuruzzaman M (2015) Urban heat island: causes, effects and mitigation measures—a review. Int J Environ Monit Anal 3:67. https://doi.org/10.11648/j.ijema.20150302.15

  76. Chen A, Yao XA, Sun R, Chen L (2014) Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For Urban Green 13:646–654. https://doi.org/10.1016/j.ufug.2014.07.006

    Article  Google Scholar 

  77. Akbari H, Rose LS (2008) Urban Surfaces and Heat Island Mitigation Potentials. J Human-Environment Syst 11:85–101. https://doi.org/10.1618/jhes.11.85

    Article  Google Scholar 

  78. Kikegawa Y, Genchi Y, Kondo H, Hanaki K (2006) Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning. Appl Energy 83:649–668. https://doi.org/10.1016/j.apenergy.2005.06.001

    Article  Google Scholar 

  79. Li D, Bou-Zeid E, Oppenheimer M (2014) The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ Res Lett 9:055002. https://doi.org/10.1088/1748-9326/9/5/055002

    Article  Google Scholar 

  80. Heusinger J, Weber S (2015) Comparative microclimate and dewfall measurements at an urban green roof versus bitumen roof. Build Environ 92:713–723. https://doi.org/10.1016/j.buildenv.2015.06.002

    Article  Google Scholar 

  81. Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Köhler M, Liu KKY, Rowe B (2007) Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. Bioscience 57:823–833. https://doi.org/10.1641/B571005

    Article  Google Scholar 

  82. Wong NH, Tan AYK, Tan PY, Sia A, Wong NC (2010) Perception studies of vertical greenery systems in Singapore. J Urban Plan Dev. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000034

    Article  Google Scholar 

  83. Cheng CY, Cheung KKS, Chu LM (2010) Thermal performance of a vegetated cladding system on facade walls. Build Environ 45:1779–1787. https://doi.org/10.1016/j.buildenv.2010.02.005

    Article  Google Scholar 

  84. Hoelscher M-T, Nehls T, Jänicke B, Wessolek G (2016) Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build 114:283–290. https://doi.org/10.1016/j.enbuild.2015.06.047

    Article  Google Scholar 

  85. Yang X, Zhao L (2015) Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City. Buildings 6:2. https://doi.org/10.3390/buildings6010002

    Article  Google Scholar 

  86. Ca VT, Asaeda T, Abu EM (1998) Reductions in air conditioning energy caused by a nearby park. Energy Build 29:83–92. https://doi.org/10.1016/S0378-7788(98)00032-2

    Article  Google Scholar 

  87. Yu C, Hien WN (2006) Thermal benefits of city parks. Energy Build 38:105–120. https://doi.org/10.1016/j.enbuild.2005.04.003

    Article  Google Scholar 

  88. Skoulika F, Santamouris M, Kolokotsa D, Boemi N (2014) On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landsc Urban Plan 123:73–86. https://doi.org/10.1016/j.landurbplan.2013.11.002

    Article  Google Scholar 

  89. Guneroglu N, Acar C, Dihkan M, Karsli F, Guneroglu A (2013) Green corridors and fragmentation in South Eastern Black Sea coastal landscape. Ocean Coast Manag 83. https://doi.org/10.1016/j.ocecoaman.2013.02.025

  90. McPherson EG, Simpson JR (2000) Carbon dioxide reduction through urban forestry: guidelines for professional and volunteer tree planters

    Google Scholar 

  91. McPherson EG (2001) Sacramento’s parking lot shading ordinance: environmental and economic costs of compliance. Landsc Urban Plan 57:105–123. https://doi.org/10.1016/S0169-2046(01)00196-7

    Article  Google Scholar 

  92. Vailshery LS, Jaganmohan M, Nagendra H (2013) Effect of street trees on microclimate and air pollution in a tropical city. Urban For Urban Green 12:408–415. https://doi.org/10.1016/j.ufug.2013.03.002

    Article  Google Scholar 

  93. Vaz Monteiro M, Doick KJ, Handley P, Peace A (2016) The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban For Urban Green 16:160–169. https://doi.org/10.1016/j.ufug.2016.02.008

    Article  Google Scholar 

  94. Oliveira S, Andrade H, Vaz T (2011) The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build Environ 46:2186–2194. https://doi.org/10.1016/j.buildenv.2011.04.034

    Article  Google Scholar 

  95. Akbari H, Menon S, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Clim Change 94:275–286. https://doi.org/10.1007/s10584-008-9515-9

    Article  CAS  Google Scholar 

  96. Doulos L, Santamouris M, Livada I (2004) Passive cooling of outdoor urban spaces. The role of materials. Sol Energy 77:231–249. https://doi.org/10.1016/j.solener.2004.04.005

    Article  CAS  Google Scholar 

  97. Kolokotroni M, Kolokotsa DD (2013) Energy and environmental aspects of cool materials. In: Kolokotroni M, Kolokotsa D-D (eds) Advances in the development of cool materials for the built environment. Bentham Science Publishers, pp 231–272

    Google Scholar 

  98. Pisello AL, Castaldo VL, Piselli C, Pignatta G, Cotana F (2015) Combined thermal effect of cool roof and cool façade on a prototype building. Energy Procedia 78:1556–1561. https://doi.org/10.1016/j.egypro.2015.11.205

    Article  Google Scholar 

  99. Levinson R, Berdahl P, Akbari H, Miller W, Joedicke I, Reilly J, Suzuki Y, Vondran M (2007) Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials. Sol Energy Mater Sol Cells 91:304–314. https://doi.org/10.1016/j.solmat.2006.06.062

    Article  CAS  Google Scholar 

  100. Chen A (2020) Cool colors, cool roofs, part 2. Science beat. https://www2.lbl.gov/Science-Articles/Archive/sb/Aug-2004/3_coolroofs-2.html. Accessed 17 June 2020

  101. Cool Colors, Cool Roofs, part 2. Science Beat. https://www2.lbl.gov/Science-Articles/Archive/sb/Aug-2004/3_coolroofs-2.html. Accessed 17 June 2020

  102. Gas Pacific, Company Electric (2006) Inclusion of solar reflectance and thermal emittance prescriptive requirements for residential roofs in title 24. Pacific Gas and Electric Company, Sacramento, CA

    Google Scholar 

  103. Pisello AL, Castaldo VL, Piselli C, Fabiani C, Cotana F (2017) Thermal performance of coupled cool roof and cool façade: experimental monitoring and analytical optimization procedure. Energy Build 157:35–52. https://doi.org/10.1016/j.enbuild.2017.04.054

    Article  Google Scholar 

  104. Sleiman M, Kirchstetter TW, Berdahl P, Gilbert HE, Quelen S, Marlot L, Preble CV, Chen S, Montalbano A, Rosseler O, Akbari H, Levinson R, Destaillats H (2014) Soiling of building envelope surfaces and its effect on solar reflectance—Part II: development of an accelerated aging method for roofing materials. Sol Energy Mater Sol Cells 122:271–281. https://doi.org/10.1016/j.solmat.2013.11.028

    Article  CAS  Google Scholar 

  105. Sleiman M, Chen S, Gilbert HE, Kirchstetter TW, Berdahl P, Bibian E, Bruckman LS, Cremona D, French RH, Gordon DA, Emiliani M, Kable J, Ma L, Martarelli M, Paolini R, Prestia M, Renowden J, Marco Revel G, Rosseler O, Shiao M, Terraneo G, Yang T, Yu L, Zinzi M, Akbari H, Levinson R, Destaillats H (2015) Soiling of building envelope surfaces and its effect on solar reflectance—Part III: Interlaboratory study of an accelerated aging method for roofing materials. Sol Energy Mater Sol Cells 143:581–590. https://doi.org/10.1016/j.solmat.2015.07.031

    Article  CAS  Google Scholar 

  106. Qin Y (2015) A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev 52:445–459. https://doi.org/10.1016/j.rser.2015.07.177

    Article  Google Scholar 

  107. Pomerantz M, Akbari H, Chang S-C, Levinson R, Pon B (2003) Examples of cooler reflective streets for urban heat-island mitigation: Portland cement concrete and chip seals. Berkeley, CA

    Google Scholar 

  108. Belshe M, Kaloush KE, Golden JS, Mamlouk MS (2008) The urban heat island effect and impact of asphalt rubber friction course overlays on Portland cement concrete pavements in the Phoenix area. GeoCongress 2008. American Society of Civil Engineers, Reston, VA, pp 1032–1040

    Chapter  Google Scholar 

  109. Li H, Harvey JT, Holland TJ, Kayhanian M (2013) The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management. Environ Res Lett 8:015023. https://doi.org/10.1088/1748-9326/8/1/015023

    Article  Google Scholar 

  110. Ministry to promote water-retentive pavement for heat island control. https://www.japanfs.org/en/news/archives/news_id025750.html. Accessed 17 June 2020

  111. Nabil A, Mardaljevic J (2006) Useful daylight illuminances: a replacement for daylight factors. Energy Build 38:905–913. https://doi.org/10.1016/j.enbuild.2006.03.013

    Article  Google Scholar 

  112. Kristl Ž, Krainer A (2001) Energy evaluation of urban structure and dimensioning of building site using iso-shadow method. Sol Energy 70:23–34. https://doi.org/10.1016/S0038-092X(00)00113-4

    Article  Google Scholar 

  113. Johansson E (2006) Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Build Environ 41:1326–1338. https://doi.org/10.1016/j.buildenv.2005.05.022

    Article  Google Scholar 

  114. Krüger E, Pearlmutter D, Rasia F (2010) Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment. Appl Energy 87:2068–2078. https://doi.org/10.1016/j.apenergy.2009.11.034

    Article  Google Scholar 

  115. Ratti C, Di Sabatino S, Britter R (2006) Urban texture analysis with image processing techniques: winds and dispersion. Theor Appl Climatol 84:77–90. https://doi.org/10.1007/s00704-005-0146-z

    Article  Google Scholar 

  116. Memon RA, Leung DYC, Liu C-H (2010) Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. Build Environ 45:176–188. https://doi.org/10.1016/j.buildenv.2009.05.015

    Article  Google Scholar 

  117. Qin Y (2015) Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build 96:86–94. https://doi.org/10.1016/j.enbuild.2015.03.005

    Article  Google Scholar 

  118. Shashua-Bar L, Hoffman ME (2000) Vegetation as a climatic component in the design of an urban street. Energy Build 31:221–235. https://doi.org/10.1016/S0378-7788(99)00018-3

    Article  Google Scholar 

  119. Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol Energy 81:742–754. https://doi.org/10.1016/j.solener.2006.10.007

    Article  Google Scholar 

  120. Murakawa S, Sekine T, Narita K, Nishina D (1991) Study of the effects of a river on the thermal environment in an urban area. Energy Build 16:993–1001. https://doi.org/10.1016/0378-7788(91)90094-J

    Article  Google Scholar 

  121. Manteghi G, Limit H Bin, Remaz D (2015) Water bodies an urban microclimate: a review. Mod Appl Sci 9. https://doi.org/10.5539/mas.v9n6p1

  122. Steeneveld GJ, Koopmans S, Heusinkveld BG, Theeuwes NE (2014) Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landsc Urban Plan 121:92–96. https://doi.org/10.1016/j.landurbplan.2013.09.001

    Article  Google Scholar 

  123. Doick KJ, Peace A, Hutchings TR (2014) The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci Total Environ 493:662–671. https://doi.org/10.1016/j.scitotenv.2014.06.048

    Article  CAS  Google Scholar 

  124. Du S, Xiong Z, Wang Y-C, Guo L (2016) Quantifying the multilevel effects of landscape composition and configuration on land surface temperature. Remote Sens Environ 178:84–92. https://doi.org/10.1016/j.rse.2016.02.063

    Article  Google Scholar 

  125. Dihkan M, Karsli F, Guneroglu A, Guneroglu N (2015) Evaluation of surface urban heat island (SUHI) effect on coastal zone: the case of Istanbul Megacity. Ocean Coast Manage 118. https://doi.org/10.1016/j.ocecoaman.2015.03.008

Download references

Acknowledgements

This study was financially supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through the project numbered 112Y038. The authors are also grateful to the Global Land Cover Facility (GLCF) for providing the Landsat TM satellite data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Dihkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dihkan, M., Karsli, F., Guneroglu, A., Guneroglu, N. (2021). Revisiting Urban Heat Island Effects in Coastal Regions: Mitigation Strategies for the Megacity of Istanbul. In: Enteria, N., Santamouris, M., Eicker, U. (eds) Urban Heat Island (UHI) Mitigation. Advances in 21st Century Human Settlements. Springer, Singapore. https://doi.org/10.1007/978-981-33-4050-3_13

Download citation

Publish with us

Policies and ethics