Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 375 Accesses

Abstract

A general introduction to the field of active matter physics is presented in this chapter. This thesis is dedicated to experimental studies on collective motion of swimming bacteria from the viewpoint of nonequilibrium statistical physics. Collective motion of self-propelled elements has fascinating properties that are often different from those of orientationally-ordered equilibrium systems due to its intrinsically nonequilibrium nature. To further understand such properties, we explore emergent order and fluctuations in two major classes of collective motion: the Vicsek universality class and active turbulence. Starting from the definitions on self-propulsion and active matter, we briefly review the typical active matter systems and their collective motion in nature and in experiments. By summarizing current situations on the theoretical understanding of collective motion such as state-of-the-art interpretations on giant number fluctuations, we formulate the questions we address in the following chapters. At the end of the chapter, we summarize the organization of this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One might oppose to this definition by raising chemotaxis and collective motion. In these cases, the directions of motion are indeed ‘modified’ by the external chemical gradient or by their neighbors. However, each self-propelled object can still move at a certain direction even without such external fields, and thus these are upper-level phenomena exhibited by self-propelled objects in response to the external fields.

References

  1. Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517:71–140

    Article  ADS  Google Scholar 

  2. Ginelli F, Peruani F, Pillot M-H, Chaté H, Theraulaz G, Bon R (2015) Intermittent collective dynamics emerge from conflicting imperatives in sheep herds. Proc Natl Acad Sci USA 112(41):12729–12734

    Article  ADS  Google Scholar 

  3. Zhang HP, Be’er A, Florin E-L, Swinney HL (2010) Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci USA 107(31):13626–13630

    Article  ADS  Google Scholar 

  4. Schaller V, Weber C, Semmrich C, Frey E, Bausch AR (2010) Polar patterns of driven filaments. Nature 467(7311):73–77

    Article  ADS  Google Scholar 

  5. Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K, Chaté H, Oiwa K (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448–452

    Article  ADS  Google Scholar 

  6. Schaller V, Bausch AR (2013) Topological defects and density fluctuations in collectively moving systems. Proc Natl Acad Sci USA 110(12):4488–4493

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Palacci J, Cottin-Bizonne C, Ybert C, Bocquet L (2010) Sedimentation and Effective Temperature of Active Colloidal Suspensions. Phys Rev Lett 105(8):088304

    Article  ADS  Google Scholar 

  8. Ginot F, Theurkauff I, Levis D, Ybert C, Bocquet L, Berthier L, Cottin-Bizonne C (2015) Nonequilibrium equation of state in suspensions of active colloids. Phys Rev X 5(1):011004

    Google Scholar 

  9. Jiang H-R, Yoshinaga N, Sano M (2010) Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys Rev Lett 105(26):268302

    Article  ADS  Google Scholar 

  10. Suzuki R, Jiang H-R, Sano M (2011) Validity of fluctuation theorem on self-propelling particles. arXiv:1104.5607

  11. Nishiguchi D, Sano M (2015) Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field. Phys Rev E 92(5):052309

    Article  ADS  Google Scholar 

  12. Bricard A, Caussin J-B, Desreumaux N, Dauchot O, Bartolo D (2013) Emergence of macroscopic directed motion in populations of motile colloids. Nature 503(7474):95–98

    Article  ADS  Google Scholar 

  13. Nishiguchi D, Iwasawa J, Jiang H-R, Sano M (2018) Flagellar dynamics of chains of active Janus particles fueled by an AC electric field. New J Phys 20:015002

    Article  Google Scholar 

  14. Ramaswamy S, Simha RA, Toner J (2003) Active nematics on a substrate: giant number fluctuations and long-time tails. Eur Lett 62(2):196–202

    Article  ADS  Google Scholar 

  15. Deseigne J, Dauchot O, Chaté H (2010) Collective motion of vibrated polar disks. Phys Rev Lett 105(9):098001

    Article  ADS  Google Scholar 

  16. Kumar N, Soni H, Ramaswamy S, Sood AK (2014) Flocking at a distance in active granular matter. Nat Commun 5:4688

    Article  ADS  Google Scholar 

  17. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226

    Article  ADS  MathSciNet  Google Scholar 

  18. Toner J, Tu Y (1995) Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys Rev Lett 75(23):4326–4329

    Article  ADS  Google Scholar 

  19. Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or -two-dimensional isotropic Heisenberg models. Phys Rev Lett 17(22):1133

    Article  ADS  Google Scholar 

  20. Toner J, Tu Y (1998) Flocks, herds, and schools: a quantitative theory of flocking. Phys Rev E 58(4):4828–4858

    Article  ADS  MathSciNet  Google Scholar 

  21. Toner J (2012) Reanalysis of the hydrodynamic theory of fluid, polar-ordered flocks. Phys Rev E 86(3):031918

    Article  ADS  MathSciNet  Google Scholar 

  22. Toner J, Tu Y, Ramaswamy S (2005) Hydrodynamics and phases of flocks. Ann Phys 318:170–244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, Simha RA (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85(3):1143–1189

    Article  ADS  Google Scholar 

  24. Grégoire G, Chaté H (2004) Onset of collective and cohesive motion. Phys Rev Lett 92(2):025702

    Article  ADS  Google Scholar 

  25. Chaté H, Ginelli F, Grégoire G, Peruani F, Raynaud F (2008) Modeling collective motion: Variations on the Vicsek model. Eur Phys J B 64:451–456

    Article  ADS  Google Scholar 

  26. Chaté H, Ginelli F, Montagne R (2006) Simple model for active nematics: Quasi-long-range order and giant fluctuations. Phys Rev Lett 96(18):180602

    Article  ADS  Google Scholar 

  27. Ginelli F, Peruani F, Bär M, Chaté H (2010) Large-scale collective properties of self-propelled rods. Phys Rev Lett 104(18):184502

    Article  ADS  Google Scholar 

  28. Ngo S, Peshkov A, Aranson IS, Bertin E, Ginelli F, Chaté H (2014) Large-scale chaos and fluctuations in active nematics. Phys Rev Lett 113(3):038302

    Article  ADS  Google Scholar 

  29. Solon AP, Tailleur J (2013) Revisiting the flocking transition using active Spins. Phys Rev Lett 111(7):078101

    Article  ADS  Google Scholar 

  30. Solon AP, Chaté H, Tailleur J (2015) From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. Phys Rev Lett 114(6):068101

    Article  ADS  Google Scholar 

  31. Narayan V, Ramaswamy S, Menon N (2007) Long-lived giant number fluctuations in a swarming granular nematic. Science 317(July):105(New York, N.Y.)

    Google Scholar 

  32. Duclos G, Garcia S, Yevick HG, Silberzan P (2014) Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10(14):2346–2353

    Article  ADS  Google Scholar 

  33. Wensink HH, Dunkel J, Heidenreich S, Drescher K, Goldstein RE, Löwen H, Yeomans JM (2012) Meso-scale turbulence in living fluids. Proc Natl Acad Sci USA 109(36):14308–14313

    Article  ADS  MATH  Google Scholar 

  34. Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93(9):098103

    Article  ADS  Google Scholar 

  35. Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO (2007) Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids 43(5):737–753

    Article  Google Scholar 

  36. Sokolov A, Aranson IS, Kessler JO, Goldstein R (2007) Concentration Dependence of the Collective Dynamics of Swimming Bacteria. Phys Rev Lett 98(15):158102

    Article  ADS  Google Scholar 

  37. Sokolov A, Aranson IS (2012) Physical properties of collective motion in suspensions of bacteria. Phys Rev Lett 109(24):248109

    Article  ADS  Google Scholar 

  38. Dunkel J, Heidenreich S, Drescher K, Wensink HH, Bär M, Goldstein RE (2013) Fluid dynamics of bacterial turbulence. Phys Rev Lett 110(22):228102

    Article  ADS  Google Scholar 

  39. Subramanian G, Koch DL (2009) Critical bacterial concentration for the onset of collective swimming. J Fluid Mech 632:359

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ishikawa T, Sekiya G, Imai Y, Yamaguchi T (2007) Hydrodynamic interactions between two swimming bacteria. Biophys J 93(6):2217–2225

    Article  Google Scholar 

  41. Saintillan D, Shelley MJ (2007) Orientational order and instabilities in suspensions of self-locomoting rods. Phys Rev Lett 99(5):058102

    Article  ADS  Google Scholar 

  42. Saintillan D, Shelley MJ (2008) Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations. Phys Rev Lett 100(17):178103

    Article  ADS  Google Scholar 

  43. Saintillan D, Shelley MJ (2012) Emergence of coherent structures and large-scale flows in motile suspensions. J R Soc Interface 9(68):571–85

    Article  Google Scholar 

  44. Dunkel J, Heidenreich S, Bär M, Goldstein RE (2013) Minimal continuum theories of structure formation in dense active fluids. New J Phys 15:045016

    Article  Google Scholar 

  45. Kaiser A, Peshkov A, Sokolov A, ten Hagen B, Löwen H, Aranson IS (2014) Transport powered by bacterial turbulence. Phys Rev Lett 112(15):158101

    Article  ADS  Google Scholar 

  46. Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS (2010) Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA 107(3):969–974

    Article  ADS  Google Scholar 

  47. Wioland H, Woodhouse FG, Dunkel J, Kessler JO, Goldstein RE (2013) Confinement stabilizes a bacterial suspension into a spiral vortex. Phys Rev Lett 110(26):268102

    Article  ADS  Google Scholar 

  48. Lushi E, Wioland H, Goldstein RE (2014) Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc Natl Acad Sci USA 111(27):9733–9738

    Article  ADS  Google Scholar 

  49. Wioland H, Woodhouse FG, Dunkel J, Goldstein RE (2016) Ferromagnetic and antiferromagnetic order in bacterial vortex lattices. Nat Phys 12:341–345

    Article  Google Scholar 

  50. Wioland H, Lushi E, Goldstein RE (2016) Directed collective motion of bacteria under channel confinement. New J Phys 18(7):075002

    Article  Google Scholar 

  51. Nishiguchi D, Nagai KH, Chaté H, Sano M (2017) Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria. Phys Rev E 95(2):020601(R)

    Article  ADS  Google Scholar 

  52. Nishiguchi D, Aranson IS, Snezhko A, Sokolov A (2018) Engineering bacterial vortex lattice via direct laser lithography. Nat Commun(9)4486:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Nishiguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishiguchi, D. (2020). General Introduction. In: Order and Fluctuations in Collective Dynamics of Swimming Bacteria. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9998-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9998-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9997-9

  • Online ISBN: 978-981-32-9998-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics