Skip to main content

Ring-LWE Public Key Encryption Processor

  • Chapter
  • First Online:
Lattice-Based Public-Key Cryptography in Hardware

Part of the book series: Computer Architecture and Design Methodologies ((CADM))

  • 746 Accesses

Abstract

In this chapter we analyze the \(\mathtt {LPR}\) ring-LWE public key encryption scheme of Sect. 2.4.1 and design a compact hardware architecture of the encryption processor. From Fig. 2.4 of Sect. 2.4.1, we see that the \(\mathtt {LPR}\) encryption scheme is composed of a discrete Gaussian sampler, a polynomial arithmetic (addition/multiplication) unit, a message encoder and a message decoder. In the last chapter we described how to design the discrete Gaussian sampler efficiently. In this chapter we first design a novel polynomial arithmetic unit and integrate it with the discrete Gaussian sampler to realize the ring-LWE public key encryption processor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aysu A, Patterson C, Schaumont P (2013) Low-cost and area-efficient fpga implementations of lattice-based cryptography. In: 2013 IEEE international symposium on hardware-oriented security and trust (HOST), pp 81–86

    Google Scholar 

  2. Cormen TH, Stein C, Rivest RL, Leiserson CE (2001) Introduction to algorithms, 2nd edn. McGraw-Hill Higher Education, Pennsylvania

    MATH  Google Scholar 

  3. de Clercq R, Roy SS, Vercauteren F, Verbauwhede I (2015) Efficient software implementation of ring-LWE encryption. In: Proceedings of the 2015 design, automation & test in europe conference & exhibition, DATE ’15, pp 339–344

    Google Scholar 

  4. de Clercq R, Uhsadel L, Van Herrewege A, Verbauwhede I (2014) Ultra Low-Power Implementation of ECC on the ARM Cortex-M0+. In: Proceedings of the 51st annual design automation conference, DAC ’14. ACM, New York, NY, USA, pp 112:1–112:6

    Google Scholar 

  5. Devroye L (1986) Non-uniform random variate generation. Springer, New York

    Chapter  Google Scholar 

  6. Dichtl M, Golic JD (2007) High-speed true random number generation with logic gates only. Cryptographic hardware and embedded systems - CHES 2007, LNCS, vol 4727. Springer, Berlin, pp 45–62

    Google Scholar 

  7. Golic JD (2006) New methods for digital generation and postprocessing of random data. IEEE Trans Comput 55(10):1217–1229

    Article  Google Scholar 

  8. Göttert N, Feller T, Schneider M, Buchmann J, Huss S (2012) On the design of hardware building blocks for modern lattice-based encryption schemes. Cryptographic hardware and embedded systems-CHES 2012. LNCS, vol 7428. Springer, Berlin, pp 512–529

    Chapter  Google Scholar 

  9. Hirschhorn P, Hoffstein J, Howgrave-graham N, Whyte W (2009) Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Proceedings of the ACNS 2009, LNCS, vol 5536, Springer, pp 437–455

    Google Scholar 

  10. Howgrave Graham N (2007) A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Advances in cryptology - CRYPTO 2007. Lecture notes in computer science, vol 4622. Springer, Berlin, pp 150–169

    Google Scholar 

  11. Kamal A, Youssef A (2009) An FPGA implementation of the NTRUEncrypt cryptosystem. In: 2009 international conference on microelectronics (ICM), pp 209–212

    Google Scholar 

  12. Lepoint T, Naehrig M (2014) A comparison of the homomorphic encryption schemes FV and YASHE. In: Progress in cryptology – AFRICACRYPT 2014: 7th international conference on cryptology in Africa, Marrakesh, Morocco, 28–30 May 2014. Springer International Publishing, Cham, pp 318–335

    Chapter  Google Scholar 

  13. Lindner R, Peikert C (2011) Better key sizes (and Attacks) for LWE-based encryption. CT-RSA 2011:319–339

    MathSciNet  MATH  Google Scholar 

  14. Liu M, Nguyen PQ (2013) Solving BDD by enumeration: an update. In: Proceedings of the 13th international conference on topics in cryptology, CT-RSA’13. Springer, Berlin, pp 293–309

    Chapter  Google Scholar 

  15. Liu Z, Seo H, Roy SS, Großschädl J, Kim H, Verbauwhede I (2015) Efficient ring-LWE encryption on 8-Bit AVR processors. In: Proceedings of the 17th international workshop cryptographic hardware and embedded systems – CHES 2015, Saint-Malo, France, 13–16 September 2015. Springer, Berlin, pp 663–682

    Google Scholar 

  16. Lyubashevsky V, Peikert C, Regev O (2010) On ideal lattices and learning with errors over rings. Advances in cryptology-EUROCRYPT 2010. Lecture notes in computer science, vol 6110. Springer, Berlin, pp 1–23

    Google Scholar 

  17. Ma Y, Wanhammar L (2000) A hardware efficient control of memory addressing for high-performance FFT processors. IEEE Trans Signal Process 48(3):917–921

    Article  Google Scholar 

  18. Oder T, Schneider T, Pöppelmann T, Güneysu T (2015) Practical CCA2-secure and masked ring-LWE implementation. Cryptology ePrint Archive, Report 2016/1109. http://eprint.iacr.org/2016/1109

  19. Park A, Han DG (2016) chosen ciphertext simple power analysis on software 8-bit implementation of ring-LWE encryption. In: 2016 IEEE Asian hardware-oriented security and trust (AsianHOST), pp 1–6

    Google Scholar 

  20. Pollard J (1971) The fast fourier transform in a Finite Field. Math Comput 25:365–374

    Article  MathSciNet  Google Scholar 

  21. Pöppelmann T, Güneysu T (2012) Towards efficient arithmetic for lattice-based cryptography on reconfigurable hardware. Progress in cryptology-LATINCRYPT 2012. LNCS, Vol 7533. Springer, Berlin, pp 139–158

    Chapter  Google Scholar 

  22. Pöppelmann T, Güneysu T (2014) Area optimization of lightweight lattice-based encryption on reconfigurable hardware. In: 2014 IEEE international symposium on circuits and systems (ISCAS), pp 2796–2799

    Google Scholar 

  23. Pöppelmann T, Güneysu T (2014) Towards practical lattice-based public-key encryption on reconfigurable hardware. Selected areas in cryptography - SAC 2013. Lecture notes in computer science. Springer, Berlin, pp 68–85

    Chapter  Google Scholar 

  24. Rebeiro C, Roy SS, Mukhopadhyay D (2012) Pushing the limits of high-speed \(GF(2^m)\) elliptic curve scalar multiplication on FPGAs. In: Proceedings of the 14th international workshop cryptographic hardware and embedded systems – CHES 2012, Leuven, Belgium, 9–12 Sept 2012. Springer, Berlin, pp 494–511

    Chapter  Google Scholar 

  25. Reparaz O, de Clercq R, Roy SS, Vercauteren F, Verbauwhede I (2016) Additively homomorphic ring-LWE masking. In: Post-quantum cryptography: 7th international workshop, PQCrypto 2016, Fukuoka, Japan, 24–26 Feb 2016, Proceedings. Springer International Publishing, Cham, pp 233–244

    Chapter  Google Scholar 

  26. Reparaz O, Roy SS, de Clercq R, Vercauteren F, Verbauwhede I (2016) Masking ring-LWE. J Cryptograph Eng 6(2):139–153

    Article  Google Scholar 

  27. Reparaz O, Roy SS, Vercauteren F, Verbauwhede I (2015) A masked ring-LWE implementation. In: Cryptographic hardware and embedded systems – CHES 2015: 17th international workshop, Saint-Malo, France, proceedings, 13–16 Sept 2015. Springer Berlin, pp 683–702

    Google Scholar 

  28. van de Pol J, Smart NP (2013) Estimating key sizes for high dimensional lattice-based systems. In: IMA international conference. Lecture notes in computer science, vol 8308. Springer, pp 290–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Sinha Roy .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha Roy, S., Verbauwhede, I. (2020). Ring-LWE Public Key Encryption Processor. In: Lattice-Based Public-Key Cryptography in Hardware. Computer Architecture and Design Methodologies. Springer, Singapore. https://doi.org/10.1007/978-981-32-9994-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9994-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9993-1

  • Online ISBN: 978-981-32-9994-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics