Skip to main content

Energy Aware Edge Computing: A Survey

  • Conference paper
  • First Online:
High-Performance Computing Applications in Numerical Simulation and Edge Computing (HPCMS 2018, HiDEC 2018)

Abstract

Edge computing is an emerging paradigm to meet the ever-increasing computation demands from pervasive devices such as sensors, actuators, and smart things. Though the edge devices can execute complex applications, it is necessary for some applications to migrate to centralized servers. By offloading the computation from the edge nodes to the edge servers or cloud servers, the quality of computation experience could be greatly improved. However, it may cause delay and increase network overheads, and energy consumption eventually. Therefore, an optimal offloading strategy should take into account what task should be offloaded, when to offload and where to offload to avoid the overheads. Thus, it is important to tradeoff between energy consumption, computation delay and throughput when the system makes the computation offloading to achieve high energy efficiency. In this paper, we conduct a survey of energy aware edge computing, including the existing work on computation offloading frameworks and strategies in edge computing. Specifically, we describe the strategies from the perspective of energy aware offloading, energy optimization offloading and offloading algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan, M.A.: A survey of computation offloading strategies for performance improvement of applications running on mobile devices. J. Netw. Comput. Appl. 56, 28–40 (2015)

    Article  Google Scholar 

  2. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)

    Article  Google Scholar 

  3. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  4. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  5. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016)

    Article  Google Scholar 

  6. Tao, X., Ota, K., Dong, M., Qi, H., Li, K.: Performance guaranteed computation offloading for mobile-edge cloud computing. IEEE Wirel. Commun. Lett. 6(6), 774–777 (2017)

    Article  Google Scholar 

  7. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal, A.: Mobile-edge computing. ETSI White Paper, pp. 1089–7801 (2014)

    Google Scholar 

  8. Jiao, L., Friedman, R., Fu, X., Secci, S., Smoreda, Z., Tschofenig, H.: Cloud-based computation offloading for mobile devices: state of the art, challenges and opportunities. In: 2013 Future Network & Mobile Summit, pp. 1–11. IEEE (2013)

    Google Scholar 

  9. Jiang, C., Wang, Y., Ou, D., Luo, B., Shi, W.: Energy proportional servers: where are we in 2016? In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1649–1660. IEEE (2017)

    Google Scholar 

  10. Ryden, M., Oh, K., Chandra, A., Weissman, J.: Nebula: distributed edge cloud for data intensive computing. In: 2014 IEEE International Conference on Cloud Engineering, pp. 57–66. IEEE (2014)

    Google Scholar 

  11. Zhang, Q., Zhang, X., Zhang, Q., Shi, W., Zhong, H.: Firework: big data sharing and processing in collaborative edge environment. In: 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 20–25. IEEE (2016)

    Google Scholar 

  12. Cao, J., Xu, L., Abdallah, R., Shi, W.: EdgeOSh: a home operating system for Internet of everything. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1756–1764. IEEE (2017)

    Google Scholar 

  13. Kaur, K., Dhand, T., Kumar, N., Zeadally, S.: Container-as-a-service at the edge: Trade-off between energy efficiency and service availability at Fog nano data centers. IEEE Wirel. Commun. 24(3), 48–56 (2017)

    Article  Google Scholar 

  14. Rausch, T.: Message-oriented middleware for edge computing applications. In: Proceedings of the 18th Doctoral Symposium of the 18th International Middleware Conference, pp. 3–4. ACM (2017)

    Google Scholar 

  15. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures–a technology review. In: 2015 3rd International Conference on Future Internet of Things and Cloud, pp. 379–386. IEEE (2015)

    Google Scholar 

  16. Ismail, B.I., et al.: Evaluation of docker as edge computing platform. In: 2015 IEEE Conference on Open Systems (ICOS), pp. 130–135. IEEE (2015)

    Google Scholar 

  17. Jiang, C., et al.: Interdomain I/O optimization in virtualized sensor networks. Sensors 18(12), 4395 (2018)

    Article  Google Scholar 

  18. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., Leung, K.K.: Dynamic service migration in mobile edge-clouds. In: 2015 IFIP Networking Conference (IFIP Networking), pp. 1–9. IEEE (2015)

    Google Scholar 

  19. Pahl, C., Helmer, S., Miori, L., Sanin, J., Lee, B.: A container-based edge cloud PaaS architecture based on raspberry pi clusters. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pp. 117–124. IEEE (2016)

    Google Scholar 

  20. Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards QoS-aware fog service placement. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp. 89–96. IEEE (2017)

    Google Scholar 

  21. Bellavista, P., Zanni, A.: Feasibility of fog computing deployment based on docker containerization over RaspberryPi. In: Proceedings of the 18th International Conference on Distributed Computing and Networking, p. 16. ACM (2017)

    Google Scholar 

  22. Farris, I., Taleb, T., Iera, A., Flinck, H.: Lightweight service replication for ultrashort latency applications in mobile edge networks. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)

    Google Scholar 

  23. Open fog consortium working group: OpenFog Reference Architecture for Fog Computing White paper (2017)

    Google Scholar 

  24. Masip-Bruin, X., Marín-Tordera, E., Tashakor, G., Jukan, A., Ren, G.J.: Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems. IEEE Wirel. Commun. 23(5), 120–128 (2016)

    Article  Google Scholar 

  25. Masip-Bruin, X., Marin-Tordera, E., Jukan, A., Ren, G.J.: Managing resources continuity from the edge to the cloud: architecture and performance. Futur. Gener. Comput. Syst. 79, 777–785 (2018)

    Article  Google Scholar 

  26. Zhang, W., Wen, Y., Wu, D.O.: Energy-efficient scheduling policy for collaborative execution in mobile cloud computing. In: Proceedings IEEE INFOCOM, Turin, pp. 190–194. IEEE (2013)

    Google Scholar 

  27. Kwak, J., Kim, Y., Lee, J., Chong, S.: Dream: Dynamic resource and task allocation for energy minimization in mobile cloud systems. IEEE J. Sel. Areas Commun. 33(12), 2510–2523 (2015)

    Article  Google Scholar 

  28. Kim, G., Choi, H., Kim, J.: TCEP: traffic consolidation for energy-proportional high-radix networks. In: Proceedings of the 45th Annual International Symposium on Computer Architecture, pp. 712–725. IEEE Press (2018)

    Google Scholar 

  29. Liang, C., He, Y., Yu, F.R., Zhao, N.: Energy-efficient resource allocation in software-defined mobile networks with mobile edge computing and caching. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 121–126. IEEE (2017)

    Google Scholar 

  30. Dubey, H., et al.: Fog data: enhancing telehealth big data through fog computing. In: Proceedings of the ASE BigData & Socialinformatics 2015, p. 14. ACM (2015)

    Google Scholar 

  31. Alonso-Monsalve, S., García-Carballeira, F., Calderón, A.: Fog computing through public-resource computing and storage. In: 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), pp. 81–87. IEEE (2017)

    Google Scholar 

  32. Wu, G., et al.: Meccas: collaborative storage algorithm based on alternating direction method of multipliers on mobile edge cloud. In: 2017 IEEE International Conference on Edge Computing (EDGE), pp. 40–46. IEEE (2017)

    Google Scholar 

  33. Al-Badarneh, J., Jararweh, Y., Al-Ayyoub, M., Al-Smadi, M., Fontes, R.: Software defined storage for cooperative mobile edge computing systems. In: 2017 Fourth International Conference on Software Defined Systems (SDS), pp. 174–179. IEEE (2017)

    Google Scholar 

  34. Zeydan, E., et al.: Big data caching for networking: Moving from cloud to edge. IEEE Commun. Mag. 54(9), 36–42 (2016)

    Article  Google Scholar 

  35. Naas, M.I., Parvedy, P.R., Boukhobza, J., Lemarchand, L.: iFogStor: an IoT data placement strategy for fog infrastructure. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp. 97–104. IEEE (2017)

    Google Scholar 

  36. Xing, J., Dai, H., Yu, Z.: A distributed multi-level model with dynamic replacement for the storage of smart edge computing. J. Syst. Arch. 83, 1–11 (2018)

    Article  Google Scholar 

  37. Choi, W.S., Tomei, M., Vicarte, J.R.S., Hanumolu, P.K., Kumar, R.: Guaranteeing local differential privacy on ultra-low-power systems. In: 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp. 561–574. IEEE (2018)

    Google Scholar 

  38. Pang, H., Tan, K.L.: Authenticating query results in edge computing. In: Proceedings of the 20th International Conference on Data Engineering, pp. 560–571. IEEE (2004)

    Google Scholar 

  39. Mollah, M.B., Azad, M.A.K., Vasilakos, A.: Secure data sharing and searching at the edge of cloud-assisted internet of things. IEEE Cloud Comput. 4(1), 34–42 (2017)

    Article  Google Scholar 

  40. Cao, H., Wachowicz, M., Cha, S.: Developing an edge computing platform for realtime descriptive analytics. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4546–4554. IEEE (2017)

    Google Scholar 

  41. Nastic, S., et al.: A serverless real-time data analytics platform for edge computing. IEEE Internet Comput. 21(4), 64–71 (2017)

    Article  Google Scholar 

  42. Satyanarayanan, M., et al.: Edge analytics in the Internet of Things. IEEE Pervasive Comput. 14(2), 24–31 (2015)

    Article  Google Scholar 

  43. Li, S., Mishra, S.: Optimizing power consumption in multicore smartphones. J. Parallel Distrib. Comput. 95, 124–137 (2016)

    Article  Google Scholar 

  44. Panneerselvam, J., Hardy, J., Liu, L., Yuan, B., Antonopoulos, N.: Mobilouds: an energy efficient MCC collaborative framework with extended mobile participation for next generation networks. IEEE Access 4, 9129–9144 (2016)

    Article  Google Scholar 

  45. Sun, Y., Zhou, S., Xu, J.: EMM: Energy-aware mobility management for mobile edge computing in ultra-dense networks. IEEE J. Sel. Areas Commun. 35(11), 2637–2646 (2017)

    Article  Google Scholar 

  46. You, C., Zeng, Y., Zhang, R., Huang, K.: Asynchronous mobile-edge computation offloading: energy-efficient resource management. IEEE Trans. Wirel. Commun. 17(11), 7590–7605 (2018)

    Article  Google Scholar 

  47. Lyu, X., Tian, H., Sengul, C., Zhang, P.: Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Trans. Veh. Technol. 66(4), 3435–3447 (2017)

    Article  Google Scholar 

  48. Zhang, K., et al.: Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4, 5896–5907 (2016)

    Article  Google Scholar 

  49. Zhang, K., Mao, Y., Leng, S., Maharjan, S., Zhang, Y.: Optimal delay constrained offloading for vehicular edge computing networks. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)

    Google Scholar 

  50. Terefe, M.B., Lee, H., Heo, N., Fox, G.C., Oh, S.: Energy-efficient multisite offloading policy using Markov decision process for mobile cloud computing. Pervasive Mob. Comput. 27, 75–89 (2016)

    Article  Google Scholar 

  51. Qiu, Y., Jiang, C., Wang, Y., Ou, D., Li, Y., Wan, J.: Energy aware virtual machine scheduling in data centers. Energies 12(4), 646 (2019)

    Article  Google Scholar 

  52. Jiang, C., Han, G., Lin, J., Jia, G., Shi, W., Wan, J.: Characteristics of co-allocated online services and batch jobs in internet data centers: a case study from Alibaba cloud. IEEE Access 7, 22495–22508 (2019)

    Article  Google Scholar 

  53. Jiang, C., et al.: Energy efficiency comparison of hypervisors. Sustain. Comput. Inform. Syst. 22, 311–321 (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China (61472109, 61572163, 61672200, 61602137, and 61802093), Key Research and Development Program of Zhejiang Province (No. 2018C01098, 2019C01059, 2019C03134, 2019C03135) and the Natural Science Foundation of Zhejiang Province (No. LY18F020014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congfeng Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, T., Qiu, Y., Jiang, C., Wan, J. (2019). Energy Aware Edge Computing: A Survey. In: Hu, C., Yang, W., Jiang, C., Dai, D. (eds) High-Performance Computing Applications in Numerical Simulation and Edge Computing. HPCMS HiDEC 2018 2018. Communications in Computer and Information Science, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-32-9987-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9987-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9986-3

  • Online ISBN: 978-981-32-9987-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics