Skip to main content

Convoluted Cosmos: Classifying Galaxy Images Using Deep Learning

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1042)

Abstract

In this paper, a deep learning-based approach has been developed to classify the images of galaxies into three major categories, namely, elliptical, spiral, and irregular. The classifier successfully classified the images with an accuracy of 97.3958%, which outperformed conventional classifiers like Support Vector Machine and Naive Bayes. The convolutional neural network architecture involves one input convolution layer having 16 filters, followed by 4 hidden layers, 1 penultimate dense layer, and an output Softmax layer. The model was trained on 4614 images for 200 epochs using NVIDIA-DGX-1 Tesla-V100 Supercomputer machine and was subsequently tested on new images to evaluate its robustness and accuracy.

Keywords

  • Convolution neural network (CNN)
  • Softmax
  • Dropout
  • Galaxy type

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-32-9949-8_40
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-32-9949-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Odewahn, S.C., Stockwell, E.B., Pennington, R.L., Humphreys, R.M., Zumach, W.A.: Automated star/galaxy discrimination with neural networks. In: Digitised Optical Sky Surveys, pp. 215–224. Springer (1992)

    Google Scholar 

  2. De Vaucouleurs, G.: Classification and morphology of external galaxies. In: Astrophysik iv: Sternsysteme/Astrophysics iv: Stellar Systems, pp. 275–310. Springer (1959)

    Google Scholar 

  3. Hupp, E., Roy, S., Watzke, M.: NASA finds direct proof of dark matter. Press Release (2006)

    Google Scholar 

  4. Basu, A., Mandal, A., Das, A.: Blueprint of the graphical galaxy of solar system segment: an algorithmic approach using CSS3.0

    Google Scholar 

  5. Liller, M.H.: The distribution of intensity in elliptical galaxies of the virgo cluster ii. Astrophys. J. 146, 28 (1966)

    CrossRef  Google Scholar 

  6. Nieto, J.-L., Capaccioli, M., Held, E.V.: More isotropic oblate rotators in elliptical galaxies. Astron. Astrophys. 195, L1–L4 (1988)

    Google Scholar 

  7. Mihalas, D., Binney, J.: Galactic astronomy* wh freeman co. San Francisco (1968)

    Google Scholar 

  8. Benjamin, R.A., Churchwell, E., Babler, B.L., Indebetouw, R., Meade, M.R., Whitney, B.A., Watson, C., Wolfire, M.G., Wolff, M.J., Ignace, R., et al.: First glimpse results on the stellar structure of the galaxy. Astrophys. J. Lett. 630(2), L149 (2005)

    CrossRef  Google Scholar 

  9. Grebel, E.K.: The evolutionary history of local group irregular galaxies. In: Origin and Evolution of the Elements, p. 234 (2004)

    Google Scholar 

  10. Kormendy, J., Bender, R.: A revised parallel-sequence morphological classification of galaxies: structure and formation of s0 and spheroidal galaxies. Astrophys. J. Supp. Ser. 198(1), 2 (2011)

    CrossRef  Google Scholar 

  11. Buta, R.J., Sheth, K., Athanassoula, E., Bosma, A., Knapen, J.H., Laurikainen, E., Salo, H., Elmegreen, D., Ho, L.C., Zaritsky, D., et al.: A classical morphological analysis of galaxies in the spitzer survey of stellar structure in galaxies (S4G). Astrophys. J. Supp. Ser. 217(2), 32 (2015)

    CrossRef  Google Scholar 

  12. Shamir, L.: Automatic morphological classification of galaxy images. Mon. Not. R. Astron. Soc. 399(3), 1367–1372 (2009)

    CrossRef  Google Scholar 

  13. Selim, I.M., Keshk, A.E., El Shourbugy, B.M.: Galaxy image classification using non-negative matrix factorization. Int. J. Comput. Appl. 137(5) (2016)

    CrossRef  Google Scholar 

  14. Astronomía, M., Cordero Garayar, J.P., Campusano Brown, L.E., Blanc Mendiberri, G., De Propris, R., Muñoz Vidal, R.: The dry merger rate and merger relic fraction in the coma cluster core

    Google Scholar 

  15. Selim, I.M., Abd El Aziz, M.: Automated morphological classification of galaxies based on projection gradient nonnegative matrix factorization algorithm. Exp. Astron. 43(2), 131–144 (2017)

    CrossRef  Google Scholar 

  16. Kim, E.J., Brunner, R.J.: Star-galaxy classification using deep convolutional neural networks. Mon. Not. R. Astron. Soc. 2672 (2016)

    Google Scholar 

  17. https://www.kaggle.com/c/galaxy-star-separation/data

  18. Van Dyk, S.D., Peng, C.Y., Barth, A.J., Filippenko, A.V.: The environments of supernovae in post-refurbishment hubble space telescope images. Astron. J. 118(5), 2331 (1999)

    CrossRef  Google Scholar 

  19. Haykin, S.: Network, neural: a comprehensive foundation. Neural Netw. 2(2004), 41 (2004)

    Google Scholar 

  20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). arXiv:1511.06434

  21. De La Calleja, J., Fuentes, O.: Machine learning and image analysis for morphological galaxy classification. Mon. Not. R. Astron. Soc. 349(1), 87–93 (2004)

    CrossRef  Google Scholar 

  22. Angelica Marin, M., Enrique Sucar, L., Gonzalez, J.A., Diaz, R.: A hierarchical model for morphological galaxy classification. In: FLAIRS Conference (2013)

    Google Scholar 

  23. Khalifa, N.E.M., Taha, M.H.N., Ella Hassanien, A., Selim, I.M.: Deep galaxy: classification of galaxies based on deep convolutional neural networks (2017). arXiv:1709.02245

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Misra, D., Mohanty, S.N., Agarwal, M., Gupta, S.K. (2020). Convoluted Cosmos: Classifying Galaxy Images Using Deep Learning. In: Sharma, N., Chakrabarti, A., Balas, V. (eds) Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-32-9949-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9949-8_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9948-1

  • Online ISBN: 978-981-32-9949-8

  • eBook Packages: EngineeringEngineering (R0)