Skip to main content

Opportunities in Clinical Translation and Commercialization of Nanomedicine

  • Chapter
  • First Online:
Book cover NanoBioMedicine

Abstract

Nanomedicine is emerging as a potential solution for many medical science problems and will drastically change the face of diagnostics, imaging, therapeutics, and drug delivery in the near future. The elevated use of inorganic and organic nanomaterials in medicinal science leads toward the development of potentially advanced and successful technologies. Nanomaterials are proven to be efficient drug carriers for the delivery of drug to the target site as well as for diagnostics of unnatural events in body. The conjugation of nanoparticles such as gold nanoparticles with antibiotics is found to accelerate the response of drugs severalfold. Similarly, in cancer imaging and therapy, the application of nanomaterials such as gold and iron oxide opens new dimensions of opportunities. There are certainly many challenges in front of researchers which need to be addressed such as compatibility, specificity, and toxicity of nanomaterials. The major pharmaceutical industries around the globe are presently more focused on the scientific research and developmental aspects of nanomedicine which is one of the major reasons of delayed or slow commercialization of nanomedicine in the market. It is believed that these under-research and under-trial drugs and technologies will soon get translated and be available in the market with the bright face of medicinal science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039

    Article  CAS  Google Scholar 

  • Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B: Biointerfaces 107:227–234

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Z, Shah A, Siddiq M, Kraatz H-B (2014) Polymeric micelles as drug delivery vehicles. RSC Adv 4(33):17028–17038

    Article  CAS  Google Scholar 

  • Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Trans Med 1(1):10–29

    Article  Google Scholar 

  • Bakhtiar R (2013) Surface plasmon resonance spectroscopy: a versatile technique in a biochemist’s toolbox. J Chem Educ 90(2):203–209

    Article  CAS  Google Scholar 

  • Banik BL, Fattahi P, Brown JL (2016) Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):271–299

    Article  PubMed  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Bettencourt A, Almeida AJ (2012) Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 29(4):353–367

    Article  CAS  PubMed  Google Scholar 

  • Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78

    Article  CAS  Google Scholar 

  • Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. C R Phys 12(7):620–636

    Article  CAS  Google Scholar 

  • Buszewski B, Railean-Plugaru V, Pomastowski P, Rafińska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H (2018) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Cozad MJ, Bachman SL, Grant SA (2011) Assessment of decellularized porcine diaphragm conjugated with gold nanomaterials as a tissue scaffold for wound healing. J Biomed Mater Res Part A 99A(3):426–434

    Article  CAS  Google Scholar 

  • de Aragão AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araújo MC, Santiago JdAS, Cardoso VS, Quaresma P, de Souza de Almeida Leite JR, da Silva DA (2016) Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem https://doi.org/10.1016/j.arabjc.2016.04.014

  • Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23(4):517–523

    Article  CAS  PubMed  Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerich DF (2005) Nanomedicine – prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 5(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Flynn T, Wei C (2005) The pathway to commercialization for nanomedicine. Nanomedicine 1(1):47–51

    Article  CAS  PubMed  Google Scholar 

  • Godymchuk A, Frolov G, Gusev A, Zakharova O, Yunda E, Kuznetsov D, Kolesnikov E (2015) Antibacterial properties of copper nanoparticle dispersions: influence of synthesis conditions and physicochemical characteristics. IOP Conf Ser Mater Sci Eng 98(1):012033

    Article  Google Scholar 

  • Gopinath V, Priyadarshini S, Loke MF, Arunkumar J, Marsili E, Mubarak Ali D, Velusamy P, Vadivelu J (2017) Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab J Chem 10(8):1107–1117

    Article  CAS  Google Scholar 

  • Goreham RV, Mierczynska A, Smith LE, Sedev R, Vasilev K (2013) Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv 3(26):10309–10317

    Article  CAS  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700

    Article  Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2(6):789–803

    Article  CAS  PubMed  Google Scholar 

  • Havel H, Finch G, Strode P, Wolfgang M, Zale S, Bobe I, Youssoufian H, Peterson M, Liu M (2016) Nanomedicines: from bench to bedside and beyond. AAPS J 18(6):1373–1378

    Article  CAS  PubMed  Google Scholar 

  • Heo DN, Ko W-K, Bae MS, Lee JB, Lee D-W, Byun W, Lee CH, Kim E-C, Jung B-Y, Kwon IK (2014) Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B2(11):1584–1593

    Article  Google Scholar 

  • Holubnycha V, Pogorielov M, Korniienko V, Kalinkevych O, Ivashchenko O, Peplinska B, Jarek M (2017) Antibacterial activity of the new copper nanoparticles and Cu NPs/chitosan solution. 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP)

    Google Scholar 

  • Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 9(3):217–227

    Article  CAS  Google Scholar 

  • Ko W-K, Heo DN, Moon H-J, Lee SJ, Bae MS, Lee JB, Sun I-C, Jeon HB, Park HK, Kwon IK (2015) The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci 438:68–76

    Article  CAS  PubMed  Google Scholar 

  • Leenders F, Möpert K, Schmiedeknecht A, Santel A, Czauderna F, Aleku M, Penschuck S, Dames S, Sternberger M, Röhl T, Wellmann A, Arnold W, Giese K, Kaufmann J, Klippel A (2004) PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J 23(16):3303–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65(13):1866–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNamara K, Tofail SAM (2017) Nanoparticles in biomedical applications. Adv Phys X2(1):54–88

    Google Scholar 

  • Meeto DD (2013) Nanomedicine: the revolution of the big future with tiny medicine bio-nanotechnology. Wiley, pp 163–178

    Google Scholar 

  • Nikalje A (2015) Nanotechnology and its applications in medicine. Med Chem 5:081–089

    Article  CAS  Google Scholar 

  • Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C53:298–309

    Article  CAS  Google Scholar 

  • Ragelle H, Danhier F, Préat V, Langer R, Anderson DG (2017) Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv 14(7):851–864

    Article  CAS  PubMed  Google Scholar 

  • Raja S, Ramesh V, Thivaharan V (2017) Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem 10(2):253–261

    Article  CAS  Google Scholar 

  • Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305(1):85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjoy Kumar P (2015) The Ayurvedic Bhasma: the ancient science of nanomedicine. Recent Pat Nanomed (Discontinued) 5(1):12–18

    Article  CAS  Google Scholar 

  • Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, Nunan R, Pirollo KF, Rait A, Chang EH (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nano 6(4):71

    Google Scholar 

  • Shastri VP (2003) Non-degradable biocompatible polymers in medicine: past, present and future. Curr Pharm Biotechnol 4(5):331–337

    Article  CAS  PubMed  Google Scholar 

  • Solano-Umaña VV-B, Roberto J (2015) Gold and silver nanotechology on medicine. J Chem Biochem 3(1):21–33

    Google Scholar 

  • Song Y, Lu F, Li H, Wang H, Zhang M, Liu Y, Kang Z (2018) Degradable carbon dots from cigarette smoking with broad-spectrum antimicrobial activities against drug-resistant bacteria. ACS Appl Bio Mat 1:1871–1879

    Article  CAS  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2015a) Biosynthesis and characterization of gold nanoparticles using Zooglea ramigera and assessment of Its antibacterial property. J Clust Sci 26(3):675–692

    Article  CAS  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2015b) Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst Eng 38(9):1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Sul O-J, Kim J-C, Kyung T-W, Kim H-J, Kim Y-Y, Kim S-H, Kim J-S, Choi H-S (2010) Gold nanoparticles inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem 74(11):2209–2213

    Article  CAS  PubMed  Google Scholar 

  • Svenson S (2012) Clinical translation of nanomedicines. Curr Opinion Solid State Mater Sci 16(6):287–294

    Article  CAS  Google Scholar 

  • Tang Y, Zeng X, Liang J (2010) Surface plasmon resonance: an introduction to a surface spectroscopy technique. J Chem Educ 87(7):742–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkin O (2010) The application of nanomaterials in cancer diagnostics and treatment. University of Groningen, Groningen

    Google Scholar 

  • Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467–4479

    PubMed  PubMed Central  Google Scholar 

  • Vial S, Reis RL, Oliveira JM (2017) Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr Opinion Solid State Mater Sci 21(2):92–112

    Article  CAS  Google Scholar 

  • Vieira S, Vial S, Maia FR, Carvalho M, Reis RL, Granja PL, Oliveira JM (2015) Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering. RSC Adv 5(95):77996–78005

    Article  CAS  Google Scholar 

  • Virlan M, Miricescu D, Radulescu R, Sabliov C, Totan A, Calenic B, Greabu M (2016) Organic nanomaterials and their applications in the treatment of oral diseases. Molecules 21(2):207

    Article  PubMed Central  CAS  Google Scholar 

  • Wang J (2016a) Cd-containing quantum dots for biomedical imaging. The world scientific encyclopedia of nanomedicine and bioengineering I. WORLD SCIENTIFIC 5:111–158

    CAS  Google Scholar 

  • Wang Y-X (2016b) Superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy: opportunities and challenges for clinical translation. The world scientific encyclopedia of nanomedicine and bioengineering I. World Scientific:29–51

    Google Scholar 

  • Wang R, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013:12

    Google Scholar 

  • Zan X, Feng S, Balizan E, Lin Y, Wang Q (2013) Facile method for large scale alignment of one dimensional nanoparticles and control over myoblast orientation and differentiation. ACS Nano 7(10):8385–8396

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tsai P-C, Ramezanli T, Michniak-Kohn BB (2013) Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Vice Chancellor, King George’s Medical University (KGMU), Lucknow, for the encouragement and support for this work. SK Saxena is also supported by CCRH, Government of India, and US NIH grants: R37DA025576 and R01MH085259. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N., Saxena, S.K. (2020). Opportunities in Clinical Translation and Commercialization of Nanomedicine. In: Saxena, S., Khurana, S. (eds) NanoBioMedicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9898-9_22

Download citation

Publish with us

Policies and ethics