Advertisement

Dextran-based Hydrogel Layers for Biosensors

  • Andras Saftics
  • Barbara Türk
  • Attila Sulyok
  • Norbert Nagy
  • Emil Agócs
  • Benjámin Kalas
  • Péter Petrik
  • Miklós Fried
  • Nguyen Quoc Khánh
  • Aurél Prósz
  • Katalin Kamarás
  • Inna Szekacs
  • Robert Horvath
  • Sándor Kurunczi
Chapter
  • 80 Downloads

Abstract

Biofunctional coatings are key elements of biosensors regulating interactions between the sensing surface and analytes as well as matrix components of the sample. These coatings can improve sensing capabilities both by amplifying the target signal and attenuating interfering signals originating from surface fouling (non-specific binding). Considering the tested materials so far, hydrogel-based layers have been verified to be among the most effective layers in improving biochip performance. The polysaccharide dextran can be efficiently used to form hydrogel layers displaying extended three-dimensional structure on biosensor surfaces. Owing to their high water content and flexible structure, dextran coatings present advanced antifouling abilities, which can be exploited in classic bioanalytical measurements as well as in the development of cell-on-a-chip type biosensors. However, in spite of the numerous applications, the deep characterization of dextran layers has been missing from the literature. This phenomenon can be attributed to the challenging analysis of few nanometer-thick layers with high water content. The lack of available data is more pronounced regarding the layer behaviors under aqueous conditions. In this chapter we present various surface analytical methods (including biosensor-type techniques) suitable for the complex characterization of hydrogel coatings whose thickness ranges from few to several ten nanometers. As a case study, we focus on the analysis of carboxymethyl dextran (CMD) layers developed for waveguide-based label-free optical biosensor applications. Examination methodologies both under dry and aqueous conditions as well as testing of antifouling abilities are also presented.

Keywords

Dextran Hydrogel Label-free biosensor OWLS QCM Ellipsometry Non-specific binding 

Notes

Acknowledgments

This study was funded by the Momentum (“Lendület”) Program of the Hungarian Academy of Sciences, the National Research, Development and Innovation Office (NKFIH) [ERC_HU, KKP_19, KH and FK-128901 Programs] and János Bolyai Research Scholarship of the Hungarian Academy of Sciences are also gratefully acknowledged.

References

  1. Akkoyun A, Bilitewski U (2002) Optimisation of glass surfaces for optical immunosensors. Biosens Bioelectron 17:655–664.  https://doi.org/10.1016/S0956-5663(02)00029-5CrossRefPubMedGoogle Scholar
  2. Balakrishnan B, Banerjee R (2011) Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 111:4453–4474.  https://doi.org/10.1021/cr100123hCrossRefPubMedGoogle Scholar
  3. Chandra P (ed) (2016) Nanobiosensors for personalized and onsite biomedical diagnosis. Institution of Engineering and Technology, LondonGoogle Scholar
  4. Chandra P, Tan YN, Singh SP (2017) Next generation point-of-care biomedical sensors technologies for cancer diagnosis. Springer, SingaporeCrossRefGoogle Scholar
  5. Cutiongco MFA, Tan MH, Ng MYK et al (2014) Composite pullulan–dextran polysaccharide scaffold with interfacial polyelectrolyte complexation fibers: A platform with enhanced cell interaction and spatial distribution. Acta Biomater 10:4410–4418.  https://doi.org/10.1016/j.actbio.2014.06.029CrossRefPubMedGoogle Scholar
  6. De Feijter J, Benjamins J, Veer F (1978) Ellipsometry as a tool to study the adsorption behavior of syntetic and biopolyers at the air water interface. Biopolymers 17:1759–1772.  https://doi.org/10.1002/bip.1978.360170711CrossRefGoogle Scholar
  7. Dutta AK, Belfort G (2007) Adsorbed gels versus brushes: viscoelastic differences. Langmuir 23:3088–3094.  https://doi.org/10.1021/la0624743CrossRefPubMedPubMedCentralGoogle Scholar
  8. Elam JH, Nygren H, Stenberg M (1984) Covalent coupling of polysaccharides to silicon and silicon rubber surfaces. J Biomed Mater Res 18:953–959.  https://doi.org/10.1002/jbm.820180809CrossRefPubMedGoogle Scholar
  9. Elender G, Kühner M, Sackmann E (1996) Functionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers. Biosens Bioelectron 11:565–577.  https://doi.org/10.1016/0956-5663(96)83292-1CrossRefPubMedGoogle Scholar
  10. Escorihuela J, González-Martínez MÁ, López-Paz JL et al (2015) Dual-polarization interferometry: a novel technique to light up the nanomolecular world. Chem Rev 115:265–294.  https://doi.org/10.1021/cr5002063CrossRefPubMedGoogle Scholar
  11. Ferreira L, Rafael A, Lamghari M et al (2004) Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels. J Biomed Mater Res 68A:584–596.  https://doi.org/10.1002/jbm.a.20102CrossRefGoogle Scholar
  12. Ferreira GNM, Da-Silva A-C, Tomé B (2009) Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance. Trends Biotechnol 27:689–697.  https://doi.org/10.1016/j.tibtech.2009.09.003CrossRefPubMedGoogle Scholar
  13. Höök F, Kasemo B, Nylander T et al (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73:5796–5804.  https://doi.org/10.1021/ac0106501CrossRefPubMedGoogle Scholar
  14. Höök F, Vörös J, Rodahl M et al (2002) A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf B Biointerfaces 24:155–170.  https://doi.org/10.1016/S0927-7765(01)00236-3CrossRefGoogle Scholar
  15. Horvath R, Ramsden JJ (2007) Quasi-isotropic analysis of anisotropic thin films on optical waveguides. Langmuir 23:9330–9334.  https://doi.org/10.1021/la701405nCrossRefPubMedGoogle Scholar
  16. Horvath R, McColl J, Yakubov GE, Ramsden JJ (2008) Structural hysteresis and hierarchy in adsorbed glycoproteins. J Chem Phys 129:071102.  https://doi.org/10.1063/1.2968127CrossRefPubMedGoogle Scholar
  17. Horvath R, Gardner HC, Ramsden JJ (2015) Apparent self-accelerating alternating assembly of semiconductor nanoparticles and polymers. Appl Phys Lett 107:041604.  https://doi.org/10.1063/1.4927403CrossRefGoogle Scholar
  18. Ismail IM, Gray ND, Owen JR (1996) A QCM analysis of water absorption in lithium polymer electrolytes. J Chem Soc Faraday Trans 92:4115.  https://doi.org/10.1039/ft9969204115CrossRefGoogle Scholar
  19. Johannsmann D (2015) The quartz crystal microbalance in soft matter research. Springer, ChamCrossRefGoogle Scholar
  20. Kittle JD, Du X, Jiang F et al (2011) Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. Biomacromolecules 12:2881–2887.  https://doi.org/10.1021/bm200352qCrossRefPubMedGoogle Scholar
  21. Knoll W (ed) (2013) Handbook of biofunctional surfaces, 1st edn. Pan Stanford Publishing, Boca RatonGoogle Scholar
  22. Kovacs N, Patko D, Orgovan N et al (2013) Optical anisotropy of flagellin layers: in situ and label-free measurement of adsorbed protein orientation using OWLS. Anal Chem 85:5382–5389.  https://doi.org/10.1021/ac3034322CrossRefPubMedGoogle Scholar
  23. Kuhner M, Sackmann E (1996) Ultrathin hydrated dextran films grafted on glass: preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry. Langmuir 12:4866–4876.  https://doi.org/10.1021/la960282+CrossRefGoogle Scholar
  24. Laos K, Parker R, Moffat J et al (2006) The adsorption of globular proteins, bovine serum albumin and β-lactoglobulin, on poly-l-lysine–furcellaran multilayers. Carbohydr Polym 65:235–242.  https://doi.org/10.1016/j.carbpol.2006.01.010CrossRefGoogle Scholar
  25. Lee MH, Boettiger D, Composto RJ (2008) Biomimetic carbohydrate substrates of tunable properties using immobilized dextran hydrogels. Biomacromolecules 9:2315–2321.  https://doi.org/10.1021/bm8002094CrossRefPubMedGoogle Scholar
  26. Lee T-H, Hirst DJ, Aguilar M-I (2015) New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. Biochim Biophys Acta Biomembr 1848:1868–1885.  https://doi.org/10.1016/j.bbamem.2015.05.012CrossRefGoogle Scholar
  27. Lian M, Chen X, Lu Y, Yang W (2016) Self-assembled peptide hydrogel as a smart biointerface for enzyme-based electrochemical biosensing and cell monitoring. ACS Appl Mater Interfaces 8:25036–25042.  https://doi.org/10.1021/acsami.6b05409CrossRefPubMedGoogle Scholar
  28. Linder V, Gates BD, Ryan D et al (2005) Water-soluble sacrificial layers for surface micromachining. Small 1:730–736.  https://doi.org/10.1002/smll.200400159CrossRefPubMedGoogle Scholar
  29. Liu Z, Choi H, Gatenholm P, Esker AR (2011) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27:8718–8728.  https://doi.org/10.1021/la200628aCrossRefPubMedGoogle Scholar
  30. Liu J, Qi C, Tao K et al (2016) Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl Mater Interfaces 8:6411–6422.  https://doi.org/10.1021/acsami.6b00959CrossRefPubMedGoogle Scholar
  31. Liu M, Zeng X, Ma C et al (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014.  https://doi.org/10.1038/boneres.2017.14CrossRefPubMedPubMedCentralGoogle Scholar
  32. Löfås S, Johnsson B (1990) A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Soc Chem Commun:1526–1528.  https://doi.org/10.1039/C39900001526
  33. Löfås S, Johnsson B, Tegendal K, Rönnberg I (1993) Dextran modified gold surfaces for surface plasmon resonance sensors: immunoreactivity of immobilized antibodies and antibody-surface interaction studies. Colloids Surf B Biointerfaces 1:83–89.  https://doi.org/10.1016/0927-7765(93)80038-ZCrossRefGoogle Scholar
  34. Löfås S, Johnsson B, Edström Å et al (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens Bioelectron 10:813–822.  https://doi.org/10.1016/0956-5663(95)99220-FCrossRefGoogle Scholar
  35. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution−surface interface. Biomacromolecules 4:1099–1120.  https://doi.org/10.1021/bm020116iCrossRefPubMedGoogle Scholar
  36. Massia SP, Stark J, Letbetter DS (2000) Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials 21:2253–2261.  https://doi.org/10.1016/S0142-9612(00)00151-4CrossRefPubMedGoogle Scholar
  37. Mateescu A, Wang Y, Dostalek J, Jonas U (2012) Thin hydrogel films for optical biosensor applications. Membranes (Basel) 2:40–69.  https://doi.org/10.3390/membranes2010040CrossRefGoogle Scholar
  38. McArthur SL, McLean KM, Kingshott P et al (2000) Effect of polysaccharide structure on protein adsorption. Colloids Surf B Biointerfaces 17:37–48.  https://doi.org/10.1016/S0927-7765(99)00086-7CrossRefGoogle Scholar
  39. Monchaux E, Vermette P (2007) Development of dextran-derivative arrays to identify physicochemical properties involved in biofouling from serum. Langmuir 23:3290–3297.  https://doi.org/10.1021/la063012sCrossRefPubMedGoogle Scholar
  40. Müller MT, Yan X, Lee S et al (2005) Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38:5706–5713.  https://doi.org/10.1021/ma0501545CrossRefGoogle Scholar
  41. Nalam PC, Daikhin L, Espinosa-Marzal RM et al (2013) Two-fluid model for the interpretation of quartz crystal microbalance response: tuning properties of polymer brushes with solvent mixtures. J Phys Chem C 117:4533–4543.  https://doi.org/10.1021/jp310811aCrossRefGoogle Scholar
  42. Orgovan N, Patko D, Hos C et al (2014) Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport. Adv Colloid Interface Sci 211:1–16.  https://doi.org/10.1016/j.cis.2014.03.011CrossRefPubMedGoogle Scholar
  43. Peppas NA, Van Blarcom DS (2016) Hydrogel-based biosensors and sensing devices for drug delivery. J Control Release 240:142–150.  https://doi.org/10.1016/j.jconrel.2015.11.022CrossRefPubMedGoogle Scholar
  44. Perrino C (2009) Poly(L-lysine)-g-dextran (PLL-g-dex): brush-forming, biomimetic carbohydrate chains that inhibit fouling and promote lubricityGoogle Scholar
  45. Piehler J, Brecht A, Hehl K, Gauglitz G (1999) Protein interactions in covalently attached dextran layers. Colloids Surf B Biointerfaces 13:325–336.  https://doi.org/10.1016/S0927-7765(99)00046-6CrossRefGoogle Scholar
  46. Rivière JC, Myhra S (eds) (1998) Handbook of surface and interface analysis, 1st edn. Marcel Dekker, New YorkGoogle Scholar
  47. Saftics A (2018) Development of dextran-based hydrogel layers for biosensor applications. Budapest University of Technology and EconomicsGoogle Scholar
  48. Saftics A, Kurunczi S, Szekrényes Z et al (2016) Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS. Colloids Surf B Biointerfaces 146:861–870.  https://doi.org/10.1016/j.colsurfb.2016.06.057CrossRefPubMedGoogle Scholar
  49. Saftics A, Kurunczi S, Türk B et al (2017) Spin coated carboxymethyl dextran layers on TiO2-SiO2 optical waveguide surfaces. Rev Roum Chim 62:775–781Google Scholar
  50. Saftics A, Prósz GA, Türk B et al (2018) In situ viscoelastic properties and chain conformations of heavily hydrated carboxymethyl dextran layers: a comparative study using OWLS and QCM-I chips coated with waveguide material. Sci Rep 8:11840.  https://doi.org/10.1038/s41598-018-30201-6CrossRefPubMedPubMedCentralGoogle Scholar
  51. Saftics A, Türk B, Sulyok A et al (2019) Biomimetic dextran-based hydrogel layers for cell micropatterning over large areas Using the FluidFM BOT technology. Langmuir 35:2412–2421.  https://doi.org/10.1021/acs.langmuir.8b03249CrossRefPubMedGoogle Scholar
  52. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wagungdiinner Schichten und zur Mikrowagung. Zeitschrift fur Phys 155:206–222.  https://doi.org/10.1007/BF01337937CrossRefGoogle Scholar
  53. Secret E, Kelly SJ, Crannell KE, Andrew JS (2014) Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS Appl Mater Interfaces 6:10313–10321.  https://doi.org/10.1021/am501754sCrossRefPubMedGoogle Scholar
  54. Sidobre S, Puzo G, Rivière M (2002) Lipid-restricted recognition of mycobacterial lipoglycans by human pulmonary surfactant protein A: a surface-plasmon-resonance study. Biochem J 365:89–97.  https://doi.org/10.1042/bj20011659CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sivakumaran D, Maitland D, Hoare T (2011) Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. Biomacromolecules 12:4112–4120.  https://doi.org/10.1021/bm201170hCrossRefPubMedGoogle Scholar
  56. Stengel G, Höök F, Knoll W (2005) Viscoelastic modeling of template-directed DNA synthesis. Anal Chem 77:3709–3714.  https://doi.org/10.1021/ac048302xCrossRefPubMedGoogle Scholar
  57. Tanaka M, Hayashi T, Morita S (2013) The roles of water molecules at the biointerface of medical polymers. Polym J 45:701–710.  https://doi.org/10.1038/pj.2012.229CrossRefGoogle Scholar
  58. Tavakoli J, Tang Y (2017) Hydrogel based sensors for biomedical applications: an updated review. Polymers (Basel) 9:364.  https://doi.org/10.3390/polym9080364CrossRefGoogle Scholar
  59. Vogt BD, Lin EK, Wu WI, White CC (2004) Effect of film thickness on the validity of the sauerbrey equation for hydrated polyelectrolyte films. J Phys Chem B 108:12685–12690.  https://doi.org/10.1021/jp0481005CrossRefGoogle Scholar
  60. Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr 59:391–396.  https://doi.org/10.1238/Physica.Regular.059a00391CrossRefGoogle Scholar
  61. Vörös J (2004) the density and refractive index of adsorbing protein layers. Biophys J 87:553–561.  https://doi.org/10.1529/biophysj.103.030072CrossRefPubMedPubMedCentralGoogle Scholar
  62. Xu C, Lee W, Dai G, Hong Y (2018) Highly elastic biodegradable single-network hydrogel for cell printing. ACS Appl Mater Interfaces acsami 8b01294.  https://doi.org/10.1021/acsami.8b01294CrossRefGoogle Scholar
  63. Zhang J, Horváth C (2003) Capillary electrophoresis of proteins in dextran-coated columns. Electrophoresis 24:115–120.  https://doi.org/10.1002/elps.200390002CrossRefPubMedGoogle Scholar
  64. Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science (80–): 356:eaaf3627.  https://doi.org/10.1126/science.aaf3627CrossRefGoogle Scholar
  65. Zhang R, Tang M, Bowyer A et al (2005) A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials 26:4677–4683.  https://doi.org/10.1016/j.biomaterials.2004.11.048CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Andras Saftics
    • 1
  • Barbara Türk
    • 1
  • Attila Sulyok
    • 2
  • Norbert Nagy
    • 3
  • Emil Agócs
    • 3
  • Benjámin Kalas
    • 3
  • Péter Petrik
    • 3
  • Miklós Fried
    • 3
  • Nguyen Quoc Khánh
    • 4
  • Aurél Prósz
    • 1
  • Katalin Kamarás
    • 5
  • Inna Szekacs
    • 1
  • Robert Horvath
    • 1
  • Sándor Kurunczi
    • 1
  1. 1.Nanobiosensorics Laboratory, Centre for Energy Research, Hungarian Academy of SciencesBudapestHungary
  2. 2.Thin Film Physics DepartmentCentre for Energy Research, Hungarian Academy of SciencesBudapestHungary
  3. 3.Photonics DepartmentCentre for Energy Research, Hungarian Academy of SciencesBudapestHungary
  4. 4.Microtechnology DepartmentCentre for Energy Research, Hungarian Academy of SciencesBudapestHungary
  5. 5.Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of SciencesBudapestHungary

Personalised recommendations