Skip to main content

Biological Acoustic Sensors for Microbial Cell Detection

  • Chapter
  • First Online:
  • 553 Accesses

Abstract

One of the most popular areas in microbiology is the development of fast and sensitive methods for the detection of bacteria based on electrophysical analysis. The paper demonstrated the capabilities of various electroacoustic biological sensors for detection and identification of microbial cells. These sensors are based on the following main elements: the piezoelectric resonator with a longitudinal electric field, the piezoelectric resonator with a lateral electric field, the acoustic delay line with inhomogeneous piezoactive acoustic waves, and the delay line using a slot acoustic mode. They can conduct cell detection and identification of bacteria using immobilized microorganisms or directly in cell suspension. The principle of operation of such sensors is based on the registration of the interaction of microbial cells with specific antibodies, bacteriophages, and mini-antibodies. The sensitivity range of microbial cell detection is 103–108 cells/ml with the suspension conductivity of 5–50 μS/cm. At that the analysis time varies from 5 min to several hours. The presented possibilities of electroacoustic biological sensors for the detection of bacteria are focused on the clinical use of onsite as a personalized diagnostic device. The possibility of rapid detection of microflora allows timely diagnosis of the disease and timely medical assistance. In general, acoustic biological sensors form a wide class of detection systems and are very promising for use in microbiology, medicine, and veterinary medicine for solving the problems of detection and identification of bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andle JC, Vetelino JF (1994) Acoustic wave biosensors. Sensor Actuators A Phys 44(3):167–176

    Article  Google Scholar 

  • Andrä J, Böhling A, Gronewold TMA, Schlecht U, Perpeet M, Gutsmann T (2008) Surface acoustic wave biosensor as a tool to study the interactions of antimicrobial peptides with phospholipid and lipopolysaccharide model membranes. Langmuir 24(16):9148–9153

    Article  PubMed  CAS  Google Scholar 

  • Basile F, Beverly MB, Hadfield TL, Voorhees KJ (1998) Pathogenic Bacteria: their detection and differentiation by rapid liquid profiling with pyrolysis mass spectrometry. Trends Anal Chem 17:95–109

    Article  CAS  Google Scholar 

  • Bisoffi M, Hjelle B, Brown DC, Branch DW, Edwards TL, Brozik SM, Bondu-Hawkins VS, Larson RS (2008) Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosens Bioelectron 23(9):1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Borodina IA, Zaitsev BD, Kuznetsova IE, Teplykh AA (2013) Acoustic waves in a structure containing two piezoelectric plates separated by an air (vacuum) gap. IEEE Trans Ultrason Ferroelectr Freq Control 60(12):2677–2681

    Article  PubMed  Google Scholar 

  • Borodina IA, Zaitsev BD, Burygin GL, Guliy OI (2018) Sensor based on the slot acoustic wave for the non-contact analysis of the bacterial cells in the conducting suspensions. Sensors Actuators B 268:217–222

    Article  CAS  Google Scholar 

  • Branch DW, Brozik SM (2004) Low-level detection of a Bacillus anthracis simulant using love-wave biosensors on 36 YX LiTaO3. Biosens Bioelectron 19:849–859

    Article  CAS  PubMed  Google Scholar 

  • Chandra P (ed) (2016) Nanobiosensors for personalized and onsite biomedical diagnosis. IET London

    Google Scholar 

  • Chatterjee S, Mitra M, Das Gupta SK (2000) A high yielding mutant of mycobacteriophage L1 and its application as a diagnostic tool. FEMS Microbiol Lett 188:47–53

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Cheng YF (2017) Biosensors for bacterial detection. Int J Biosen Bioelectron 2(6):197–199

    Google Scholar 

  • Don E, Farafonova O, Pokhil S, Barykina D, Nikiforova M, Shulga D, Borshcheva A, Tarasov S, Ermolaeva T, Epstein O (2016) Use of piezoelectric immunosensors for detection of interferon–gamma interaction with specific antibodies in the presence of released–active forms of antibodies to interferon–gamma. Sensors 16(1):96. https://doi.org/10.3390/s16010096

    Article  CAS  PubMed Central  Google Scholar 

  • Ermolaeva TN, Kalmykova EN (2006) Piezoelectric immunosensors: analytical potentials and outlooks. J Russ Chem Rev 75(5):397–409

    Article  CAS  Google Scholar 

  • Ermolaeva TN, Kalmykova EN (2012) Capabilities of piezoelectric immunosensors for detecting infections and for early clinical diagnostics. In: Chiu NHL, Christopoulos TK (eds) Advances in immunoassay technology. In TeO

    Google Scholar 

  • Gammoudi I, Tarbague H, Othmane A, Moynet D, Rebière D, Kalfat R, Dejous C (2010) Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosens Bioelectron 26(4):1723–1726. https://doi.org/10.1016/j.bios.2010.07.118

    Article  CAS  PubMed  Google Scholar 

  • Gammoudi I, Tarbague H, Lachaud JL, Destor S, Othmane A, Moynet D, Kalfat R, Rebière D, Dejous C (2011) Love wave bacterial biosensors and microfluidic network for detection of heavy metal toxicity. Sensors Lett 9(2):816–818

    Article  CAS  Google Scholar 

  • Gascoyne P, Pethig R, Satayavivad J, Becker FF, Ruchirawat M (1997) Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection. Biochim Biophys Acta 1323:240–252

    Article  CAS  PubMed  Google Scholar 

  • Gaso Rocha MI, Jiménez Y, Francis A (2012) Laurent and Antonio Arnau Love wave biosensors: a review. Chapter 11. https://doi.org/10.5772/53077

    Google Scholar 

  • Gizeli E, Goddard NJ, Lowe CR, Stevenson AC (1992) A love plate biosensor utilising a polymer layer. Sensors Actuators B Chem 6:131–137

    Article  CAS  Google Scholar 

  • Griffiths D, Hall G (1993) Biosensors – what real progress is being made? Trends Biotechnol 11:122–130

    Article  CAS  PubMed  Google Scholar 

  • Guliy OI, Zaitsev BD, Kuznetsova IE, Shikhabudinov AM, Karavaeva OA, Dykman LA, Staroverov SA, Ignatov OV (2012) Phage mini-antibodies and their use for detection of microbial cells by using electro-acoustic sensor. Biophysics 57(3):336–342

    Article  CAS  Google Scholar 

  • Guliy OI, Zaitsev BD, Kuznetsova IE, Shikhabudinov AM, Matora LY, Makarikhina SS, Ignatov OV (2013) Investigation of specific interactions between microbial cells and polyclonal antibodies using a resonator with lateral electric field. Microbiology 82(2):215–223

    Article  CAS  Google Scholar 

  • Guliy ОI, Zaitsev BD, Kuznetsova IE, Shikhabudinov АМ, Dykman LA, Staroverov SА, Karavaeva OA, Pavliy SA, Ignatov OV (2015) Determination of the spectrum of lytic activity of bacteriophages by the method of acoustic analysis. Biophysics 60(4):592–597

    Article  CAS  Google Scholar 

  • Guliy OI, Zaitsev BD, Shikhabudinov AM, Borodina IA, Karavaeva OA, Larionova OS, Volkov AA, Teplykh AA (2017) A method of acoustic analysis for detection of bacteriophage-infected microbial cells. Biophysics 62(4):580–587

    Article  CAS  Google Scholar 

  • Guliy ОI, Zaitsev BD, Borodina IA, Shikhabudinov АМ, Teplykh AA, Staroverov SA, Fomin AS (2018) The biological acoustic sensor to record the interactions of the microbial cells with the phage antibodies in conducting suspensions. Talanta 178:569–576

    Article  CAS  Google Scholar 

  • Handa H, Gurczynski S, Jackson MP, Auner G, Mao G (2008) Recognition of Salmonella typhimurium by immobilized phage P22 monolayers. Surf Sci 602:1393–1400

    Article  CAS  Google Scholar 

  • Harding GL, Du J, Dencher PR, Barnett D, Howe E (1997) Love wave acoustic immunosensor operation in liquid. Sensors Actuators A 61(1–3):279–286

    Article  CAS  Google Scholar 

  • Howe E, Harding G (2000) A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosens Bioelectron 15(11–12):641–649

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paperbased point-of-care diagnostics. Biosens Bioelectron 54:585–597

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Arndt KM, Müller KM, Plückthun A (1999) Selectively infective phage (SIP) technology: scope and limitations. J Immunol Methods 231:93–104

    Article  CAS  PubMed  Google Scholar 

  • Kalantar-Zadeh K, Wlodarski W, Chen YY, Fry BN, Galatsis K (2003) Novel love mode surface acoustic wave based immunosensors. Sensors Actuators B 91:143–147

    Article  CAS  Google Scholar 

  • Kim YW, Meyer MT, Berkovich A, Subramanian S, Iliadis AA, Bentley WE, Ghodssi R (2016) A surface acoustic wave biofilm sensor integrated with a treatment method based on the bioelectric effect. Sensors Actuators A 238:140–149

    Article  CAS  Google Scholar 

  • Koenig B, Graetzel М (1994) A novel immunosensor for herpes virus. Anal Chem 66(3):341–348

    Article  CAS  Google Scholar 

  • Kovacs G, Lubking GW, Vellekoop MJ, Venema A (1992) Love waves for (bio)chemical sensing in liquids. In: Proceedings of the IEEE Ultrasonics Symposium, Tucson, USA

    Google Scholar 

  • Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim K, Korn C, Loessner MJ (2007) Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microbiol 73:1992–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Lib Y, Chen H, Horikawa S, Shen W, Simonian A, China BA (2010) Direct detection of Salmonella typhimurium on fresh produce using phage–based magneto elastic biosensors. Biosens Bioelectron 26(4):1313–1319

    Article  CAS  PubMed  Google Scholar 

  • Low LY, Yang C, Perego M, Osterman A, Liddington RC (2005) Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280:35433–35439

    Article  CAS  PubMed  Google Scholar 

  • Manzeniuk O, Volozhantsev NV, Svetoch EA (1994) Identification of the bacterium Pseudomonas mallei using Pseudomonas pseudomallei bacteriophages. Mikrobiologiia 63(3):537–544

    PubMed  Google Scholar 

  • Moll N, Pascal E, Dinh DH, Pillot JP, Bennetau B, Rebiere D, Moynet D, Mas Y, Mossalayi D, Pistre J, Dejous C (2007) A love wave immunosensor for whole E. coli bacteria detection using an innovative two-step immobilisation approach. Biosens Bioelectron 22(9–10):2145–2150

    Article  CAS  PubMed  Google Scholar 

  • Moll N, Pascal E, Dinh DH, Lachaud J-L, Vellutini L, Pillot J-P, Rebière D, Moynet D, Pistré J, Mossalayi D, Mas Y, Bennetau B, Déjous C (2008) Multipurpose love acoustic wave immunosensor for bacteria, virus or proteins detection. ITBM-RBM 29:155–161

    Google Scholar 

  • Nanduri V, Sorokulova IB, Samoylov AM, Simonian AL, Petrenko VA, Vodyanoy V (2007) Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens Bioelectron 22:986–992

    Article  CAS  PubMed  Google Scholar 

  • Olsen EV, Sorokulova IB, Petrenko VA, Chen IH, Barbaree JM, Vodyanoy VJ (2006) Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium. Biosens Bioelectron 21:1434–1442

    Article  CAS  PubMed  Google Scholar 

  • Paoli GC, Chen CY, Brewster JD (2004) Single-chain Fv antibody with specificity for Listeria monocytogenes. J Immunol Methods 289:147–166

    Article  CAS  PubMed  Google Scholar 

  • Petrenko VA (2003) Phage display for detection of biological threat agents. J Microbiol Methods 53:253–262

    Article  CAS  PubMed  Google Scholar 

  • Petrenko VA, Sorokulova IB (2004) Detection of biological threats. A challenge for directed molecular evolution. J Microbiol Methods 58:147–168

    Article  CAS  PubMed  Google Scholar 

  • Pinkham W, Wark M, Winters S (2005) A lateral field excited acoustic wave pesticide sensor. In: Proceedings of the IEEE Ultrasonics Symposium, pp 2279–2283

    Google Scholar 

  • Ripp S, Jegier P, Johnson CM, Brigati JR, Sayler GS (2008) Bacteriophage-amplified bioluminescent sensing of Escherichia coli O157:H7. Anal Bioanal Chem 391(2):507–514

    Article  CAS  PubMed  Google Scholar 

  • Schlensog MD, Thomas MA, Gronewold TM, Tewes M, Famulok M, Quandt E (2004) A love-wave biosensor using nucleic acids as ligands. Sensors Actuators B Chem 101:308–315

    Article  CAS  Google Scholar 

  • Schmelcher M (2008) Bacteriophage: powerful tools for the detection of bacterial pathogens. In: Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer, New York, pp 731–754

    Google Scholar 

  • Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97(2):391–410

    Article  CAS  PubMed  Google Scholar 

  • Summers WS (2005) In: Kutter E, Sulakvelidze A (eds) Bacteriophage research: early history in bacteriophages: biology and applications. CRP Press, Boca Raton

    Google Scholar 

  • Tamarin O, Comeau S, Déjous C, Moynet D, Rebière D, Bezian J, Pistré J (2003) Real time device for biosensing: design of a bacteriophage model using love acoustic wave. Biosens Bioelectron 18:755–763

    Article  CAS  PubMed  Google Scholar 

  • Tekaya N, Tarbague H, Moroté F, Gammoudi I, Sakly N, Hat BO, Raimbault V, Rebière D, Ben OH, Jaffrezic-Renault N, Lagarde F, Dejous C, Cohen-Bouhacina T (2012) Optimization of spirulina biofilm for in-situ heavy metals detection with microfluidic-acoustic sensor. In: IMCS 2012 – The 14th International meeting on chemical sensors, pp 92–95. https://doi.org/10.5162/IMCS2012/1.2.5

  • Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  • Van Emon JM, Gerlach CL, Johnson JC (1995) Environmental immunochemical methods. ACS, Washington, DC

    Google Scholar 

  • Vaughan RD, O’Sullivan CK, Cuilbault GG (2001) Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzym Microb Technol 29:635–638

    Article  CAS  Google Scholar 

  • Vetelino JF (2010) A lateral field excited acoustic wave sensor platform. In: Proceedings of the IEEE Ultrasonics Symposium, San-Diego, pp 2269–2272

    Google Scholar 

  • Von Lode P (2005) Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin Biochem 38(7):591–606

    Article  CAS  Google Scholar 

  • Wark M, Kalanyan B, Ellis L (2007) A lateral field exited acoustic wave sensor for the detection of saxitoxin in water. In: Proceedings of the IEEE Ultrasonics Symposium, pp 1217–1220

    Google Scholar 

  • Williams DD, Benedek O Jr, Turnbough CL (2003) Species-specific peptide ligands for the detection of Bacillus anthracis spores. Appl Environ Microbiol 69:6288–6293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York C, French LA, Millard P, Vetelino JF (2005) A lateral field exited acoustic wave biosensor. In: Proceedings of the IEEE Ultrasonics Symposium, pp 44–48

    Google Scholar 

  • Yousef E (2008) Detection of bacterial pathogens in different matrices: current practices and challenges. In: Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer, New York, pp 31–48

    Chapter  Google Scholar 

  • Yuan Y, Peng Q, Gao M (2012) Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis. BMC Microbiol 12:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaitsev BD, Joshi SG, Kuznetsova IE, Borodina IA (2001) Acoustic waves in piezoelectric plates bordered with viscous and conductive liquids. Ultrasonics 39(1):45–50

    Article  CAS  Google Scholar 

  • Zaitsev BD, Kuznetsova IE, Shikhabudinov AM, Ignatov OV, Guliy OI (2012) Biological sensor based on the lateral electric field excited resonator. Trans Ultrason Ferroelectr Freq Control 59(5):963–969

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guliy, О.I., Zaitsev, B.D., Teplykh, A.A., Borodina, I.A. (2020). Biological Acoustic Sensors for Microbial Cell Detection. In: Chandra, P., Prakash, R. (eds) Nanobiomaterial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9840-8_11

Download citation

Publish with us

Policies and ethics