Skip to main content

Apoptosis in Cancer Cell Signaling and Current Therapeutic Possibilities

  • Chapter
  • First Online:
Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach
  • 789 Accesses

Abstract

Apoptosis is programmed cell death, which sustains the equilibrium between survival and death in eukaryotic cells. It is a tightly regulated cell death program that aims at eliminating harmful, damaged, or unwanted cells. This wisely programmed cell death is central in the development of all multicellular organisms, which is highlighted by the prevalence of diseases associated with abnormal apoptosis. For example, defect in apoptosis is a hallmark of cancer, whereas excessive cell death occurs in several neurodegenerative disorders. The cell death signals are responsible for maintenance of the genomic integrity, while defective cell death may stimulate carcinogenesis. These signals are convoluted and are controlled at various points. Tumor cells survive by taking help of several different molecular mechanisms to inhibit apoptosis and acquire resistance to apoptotic agents, for example, by the expression of anti-apoptotic proteins such as Bcl-2 or by the downregulation or mutation of pro-apoptotic proteins such as BAX. This chapter includes recent developments in the field and reviews new evidences of the interconnection between apoptosis and cancer. Various molecules that can be regulated to facilitate apoptosis in myriad of cancers are also enlisted. Overall, the chapter discusses about the development of various treatments and approaches to combat cancer by targeting anti-apoptotic proteins belonging to Bcl-2 and IAP families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96(2):245–254

    Article  CAS  PubMed  Google Scholar 

  • Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letai AG (2008) Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat Rev Cancer 8(2):121–132

    Article  CAS  PubMed  Google Scholar 

  • Vo TT, Letai A (2010) BH3-only proteins and their effects on cancer. Adv Exp Med Biol 687:49–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    Article  CAS  PubMed  Google Scholar 

  • Bender T, Martinou JC (2013) Where killers meet--permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol 5(1):a011106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradley JR, Pober JS (2001) Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20(44):6482–6491

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO (2001) Apoptosis: corralling the corpses. Cell 104(3):325–328

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Hassan A, Bose K (2016) Molecular basis of death effector domain chain assembly and its role in caspase-8 activation. FASEB J 30(1):186–200

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Tschopp J (2000) Apoptosis induced by death receptors. Pharm Acta Helv 74(2–3):281–286

    Article  CAS  PubMed  Google Scholar 

  • Koyama S, Koike N, Adachi S (2001) Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J Cancer Res Clin Oncol 127(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  CAS  PubMed  Google Scholar 

  • Hakem R et al (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94(3):339–352

    Article  CAS  PubMed  Google Scholar 

  • Kuida K et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94(3):325–337

    Article  CAS  PubMed  Google Scholar 

  • Hector S et al (2012) Clinical application of a systems model of apoptosis execution for the prediction of colorectal cancer therapy responses and personalisation of therapy. Gut 61(5):725–733

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13(8):1378–1386

    Article  CAS  PubMed  Google Scholar 

  • Green DR (2006) At the gates of death. Cancer Cell 9(5):328–330

    Article  CAS  PubMed  Google Scholar 

  • Amundson SA et al (2000) An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 60(21):6101–6110

    CAS  PubMed  Google Scholar 

  • Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2(10):735–747

    Article  CAS  PubMed  Google Scholar 

  • King KL, Cidlowski JA (1998) Cell cycle regulation and apoptosis. Annu Rev Physiol 60:601–617

    Article  CAS  PubMed  Google Scholar 

  • Kerr JF, Searle J (1972) A mode of cell loss in malignant neoplasms. J Pathol 106(1):xi

    Google Scholar 

  • Miyashita T et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9(6):1799–1805

    CAS  PubMed  Google Scholar 

  • Vaux DL (1998) Immunopathology of apoptosis--introduction and overview. Springer Semin Immunopathol 19(3):271–278

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Cory S, Adams JM (2011) Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 30(18):3667–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Certo M et al (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9(5):351–365

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Saez AJ (2012) The secrets of the Bcl-2 family. Cell Death Differ 19(11):1733–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffo AJ et al (1995) Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55(19):4438–4445

    CAS  PubMed  Google Scholar 

  • Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21(15):2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Goolsby C et al (2005) Bcl-2 regulatory pathway is functional in chronic lymphocytic leukemia. Cytometry B Clin Cytom 63(1):36–46

    Article  PubMed  CAS  Google Scholar 

  • Deng J et al (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12(2):171–185

    Article  CAS  PubMed  Google Scholar 

  • Hanada M et al (1993) bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82(6):1820–1828

    Article  CAS  PubMed  Google Scholar 

  • Gala JL et al (1994) High expression of bcl-2 is the rule in acute lymphoblastic leukemia, except in Burkitt subtype at presentation, and is not correlated with the prognosis. Ann Hematol 69(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y et al (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226(4678):1097–1099

    Article  CAS  PubMed  Google Scholar 

  • Chen-Levy Z, Nourse J, Cleary ML (1989) The bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14;18) translocation. Mol Cell Biol 9(2):701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermine O et al (1996) Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood 87(1):265–272

    Article  CAS  PubMed  Google Scholar 

  • Karnak D, Xu L (2010) Chemosensitization of prostate cancer by modulating Bcl-2 family proteins. Curr Drug Targets 11(6):699–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellemans P et al (1995) Prognostic value of bcl-2 expression in invasive breast cancer. Br J Cancer 72(2):354–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang SX et al (1995) Expression of bcl-2 oncogene protein is prevalent in small cell lung carcinomas. J Pathol 177(2):135–138

    Article  CAS  PubMed  Google Scholar 

  • Anagnostou VK et al (2010) High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology. BMC Cancer 10:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Henriksen R, Wilander E, Oberg K (1995) Expression and prognostic significance of Bcl-2 in ovarian tumours. Br J Cancer 72(5):1324–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers F et al (2012) Targeted BCL2 inhibition effectively inhibits neuroblastoma tumour growth. Eur J Cancer 48(16):3093–3103

    Article  CAS  PubMed  Google Scholar 

  • Swellam M et al (2004) Incidence of Bcl-2 expression in bladder cancer: relation to schistosomiasis. Clin Biochem 37(9):798–802

    Article  CAS  PubMed  Google Scholar 

  • Zhao DP et al (2005) Prognostic significance of bcl-2 and p53 expression in colorectal carcinoma. J Zhejiang Univ Sci B 6(12):1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena JC et al (1999) Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer 85(1):164–170

    Article  CAS  PubMed  Google Scholar 

  • Campos L et al (1993) High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81(11):3091–3096

    Article  CAS  PubMed  Google Scholar 

  • Huang JZ et al (2002) The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99(7):2285–2290

    Article  CAS  PubMed  Google Scholar 

  • Iqbal J et al (2006) BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol 24(6):961–968

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351(6326):453–456

    Article  CAS  PubMed  Google Scholar 

  • Oren M, Rotter V (1999) Introduction: p53 – the first twenty years. Cell Mol Life Sci 55(1):9–11

    Article  CAS  PubMed  Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16

    Article  CAS  PubMed  Google Scholar 

  • Avery-Kiejda KA et al (2011) P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 11:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatter TL et al (2011) Hyperproliferation, cancer, and inflammation in mice expressing a Delta133p53-like isoform. Blood 117(19):5166–5177

    Article  CAS  PubMed  Google Scholar 

  • Vikhanskaya F et al (2007) Cancer-derived p53 mutants suppress p53-target gene expression--potential mechanism for gain of function of mutant p53. Nucleic Acids Res 35(6):2093–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaCasse EC et al (2008) IAP-targeted therapies for cancer. Oncogene 27(48):6252–6275

    Article  CAS  PubMed  Google Scholar 

  • Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13(20):5995–6000

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Fan T, Yu M (2008) Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin Shanghai 40(4):278–288

    Article  PubMed  CAS  Google Scholar 

  • Lopes RB et al (2007) Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer 120(11):2344–2352

    Article  CAS  PubMed  Google Scholar 

  • Vucic D et al (2000) ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 10(21):1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Ashhab Y et al (2001) Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett 495(1–2):56–60

    Article  CAS  PubMed  Google Scholar 

  • Chen Z et al (1999) A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 264(3):847–854

    Article  CAS  PubMed  Google Scholar 

  • Krepela E et al (2009) Increased expression of inhibitor of apoptosis proteins, survivin and XIAP, in non-small cell lung carcinoma. Int J Oncol 35(6):1449–1462

    Article  CAS  PubMed  Google Scholar 

  • Frankel SR (2003) Oblimersen sodium (G3139 Bcl-2 antisense oligonucleotide) therapy in Waldenstrom's macroglobulinemia: a targeted approach to enhance apoptosis. Semin Oncol 30(2):300–304

    Article  CAS  PubMed  Google Scholar 

  • Baell JB, Huang DC (2002) Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem Pharmacol 64(5–6):851–863

    Article  CAS  PubMed  Google Scholar 

  • Kutzki O et al (2002) Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124(40):11838–11839

    Article  CAS  PubMed  Google Scholar 

  • Becattini B et al (2004) Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-X(L). Chem Biol 11(3):389–395

    Article  CAS  PubMed  Google Scholar 

  • Qian J et al (2004) Discovery of novel inhibitors of Bcl-xL using multiple high-throughput screening platforms. Anal Biochem 328(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  CAS  PubMed  Google Scholar 

  • Stoelcker B et al (2000) Tumor necrosis factor induces tumor necrosis via tumor necrosis factor receptor type 1-expressing endothelial cells of the tumor vasculature. Am J Pathol 156(4):1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Takeda K et al (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7(1):94–100

    Article  CAS  PubMed  Google Scholar 

  • Cretney E et al (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168(3):1356–1361

    Article  CAS  PubMed  Google Scholar 

  • Herbeuval JP et al (2003) Macrophages from cancer patients: analysis of TRAIL, TRAIL receptors, and colon tumor cell apoptosis. J Natl Cancer Inst 95(8):611–621

    Article  CAS  PubMed  Google Scholar 

  • Cartron G et al (2004) From the bench to the bedside: ways to improve rituximab efficacy. Blood 104(9):2635–2642

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22(53):8590–8607

    Article  CAS  PubMed  Google Scholar 

  • Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb) 3(4):279–296

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagh, A.R., Bose, K. (2019). Apoptosis in Cancer Cell Signaling and Current Therapeutic Possibilities. In: Bose, K., Chaudhari, P. (eds) Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach. Springer, Singapore. https://doi.org/10.1007/978-981-32-9816-3_5

Download citation

Publish with us

Policies and ethics