Skip to main content

Targeting Cancer from a Structural Biology Perspective

  • Chapter
  • First Online:
Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach

Abstract

Cancers result from complex evolutionary processes with selective pressure leading to the accumulation of multiple mutations in proteins involved in the signaling circuitry and basic functions of the cell. Together, the mutant gene products co-opt the cell signaling programs that maintain homeostasis in normal tissues to serve the uncontrolled proliferation, survival, angiogenesis, metabolic, and migration functions that allow cancer cells to thrive at the expense of the organism. The details of how this happens are still not entirely understood. However, intense research in the last two decades has revealed a common set of hallmark traits acquired by cells in the progression to all cancers. A seminal article by Hanahan and Weinberg in 2000 (Hanahan and Weinberg 2000) first identified six hallmarks, with an update a decade later in 2011 (Hanahan and Weinberg 2011) that provided more detailed understanding of the original hallmarks and added two emerging new ones. It also identified enabling characteristics that facilitate acquisition of the hallmarks by cancer cells. In the present chapter, we briefly summarize the hallmarks of cancer and use the Hanahan and Weinberg framework to exemplify targets in signaling pathways that lead to each of the hallmarks from a structural biology perspective. We summarize the current state of inhibitors for at least one major target protein in each of the hallmark signaling circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrogio C, Kohler J, Zhou ZW, Wang H, Paranal R, Li J, Capelletti M, Caffarra C, Li S, Lv Q, Gondi S, Hunter JC, Lu J, Chiarle R, Santamaria D, Westover KD, Janne PA (2018) KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell 172(857–868):e15

    Google Scholar 

  • Araki M, Shima F, Yoshikawa Y, Muraoka S, Ijiri Y, Nagahara Y, Shirono T, Kataoka T, Tamura A (2011) Solution structure of the state 1 conformer of GTP-bound H-Ras protein and distinct dynamic properties between the state 1 and state 2 conformers. J Biol Chem 286:39644–39653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arteaga CL (2011) ERBB receptors in cancer: signaling from the inside. Breast Cancer Res 13:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai A, Oshima Y, Yamamoto Y, Uochi TA, Kusaka H, Akinaga S, Yamashita Y, Pongracz K, Pruzan R, Wunder E, Piatyszek M, Li S, Chin AC, Harley CB, Gryaznov S (2003) A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res 63:3931–3939

    CAS  PubMed  Google Scholar 

  • Autexier C, Lue NF (2006) The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 75:493–517

    Article  CAS  PubMed  Google Scholar 

  • Azemar M, Schmidt M, Arlt F, Kennel P, Brandt B, Papadimitriou A, Groner B, Wels W (2000) Recombinant antibody toxins specific for ErbB2 and EGF receptor inhibit the in vitro growth of human head and neck cancer cells and cause rapid tumor regression in vivo. Int J Cancer 86:269–275

    Article  CAS  PubMed  Google Scholar 

  • Baerlocher GM, Burington B, Snyder DS (2015a) Telomerase inhibitor Imetelstat in essential Thrombocythemia and myelofibrosis. N Engl J Med 373:2580

    Article  PubMed  CAS  Google Scholar 

  • Baerlocher GM, Oppliger Leibundgut E, Ottmann OG, Spitzer G, Odenike O, Mcdevitt MA, Roth A, Daskalakis M, Burington B, Stuart M, Snyder DS (2015b) Telomerase inhibitor Imetelstat in patients with essential Thrombocythemia. N Engl J Med 373:920–928

    Article  CAS  PubMed  Google Scholar 

  • Basilico C, Pennacchietti S, Vigna E, Chiriaco C, Arena S, Bardelli A, Valdembri D, Serini G, Michieli P (2013) Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin Cancer Res 19:2381–2392

    Article  CAS  PubMed  Google Scholar 

  • Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Hao F, Yan G, Teng L, Lee RJ, Xie J (2016) Actively targeted nanoparticles for drug delivery to tumor. Curr Drug Metab 17:763–782

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    Article  CAS  PubMed  Google Scholar 

  • Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J (1998) The structural basis of the activation of Ras by Sos. Nature 394:337–343

    Article  CAS  PubMed  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  CAS  PubMed  Google Scholar 

  • Bryan C, Rice C, Hoffman H, Harkisheimer M, Sweeney M, Skordalakes E (2015) Structural basis of telomerase inhibition by the highly specific BIBR1532. Structure 23:1934–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhrman G, Wink G, Mattos C (2007) Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf. Structure 15:1618–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhrman G, Holzapfel G, Fetics S, Mattos C (2010) Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Proc Natl Acad Sci USA 107:4931–4936

    Article  CAS  PubMed  Google Scholar 

  • Buhrman G, O’Connor C, Zerbe B, Kearney BM, Napoleon R, Kovrigina EA, Vajda S, Kozakov D, Kovrigin EL, Mattos C (2011) Analysis of binding site hot spots on the surface of Ras GTPase. J Mol Biol 413:773–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8:671–682

    Article  CAS  PubMed  Google Scholar 

  • Chakhparonian M, Wellinger RJ (2003) Telomere maintenance and DNA replication: how closely are these two connected? Trends Genet 19:439–446

    Article  CAS  PubMed  Google Scholar 

  • Ciardiello F, Caputo R, Troiani T, Borriello G, Kandimalla ER, Agrawal S, Mendelsohn J, Bianco AR, Tortora G (2001) Antisense oligonucleotides targeting the epidermal growth factor receptor inhibit proliferation, induce apoptosis, and cooperate with cytotoxic drugs in human cancer cell lines. Int J Cancer 93:172–178

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579

    Article  CAS  PubMed  Google Scholar 

  • Cosentino K, Garcia-Saez AJ (2017) Bax and Bak pores: are we closing the circle? Trends Cell Biol 27:266–275

    Article  CAS  PubMed  Google Scholar 

  • Cragg MS, Harris C, Strasser A, Scott CL (2009) Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 9:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cristofari G, Lingner J (2003) Fingering the ends: how to make new telomeres. Cell 113:552–554

    Article  CAS  PubMed  Google Scholar 

  • Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung PP, Pairish M, Jia L, Meng J, Funk L, Botrous I, Mctigue M, Grodsky N, Ryan K, Padrique E, Alton G, Timofeevski S, Yamazaki S, Li Q, Zou H, Christensen J, Mroczkowski B, Bender S, Kania RS, Edwards MP (2011) Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 54:6342–6363

    Article  CAS  PubMed  Google Scholar 

  • Czabotar PE, Lee EF, Van Delft MF, Day CL, Smith BJ, Huang DC, Fairlie WD, Hinds MG, Colman PM (2007) Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA 104:6217–6222

    Article  CAS  PubMed  Google Scholar 

  • Day PJ, Cleasby A, Tickle IJ, O'reilly M, Coyle JE, Holding FP, Mcmenamin RL, Yon J, Chopra R, Lengauer C, Jhoti H (2009) Crystal structure of human CDK4 in complex with a D-type cyclin. Proc Natl Acad Sci USA 106:4166–4170

    Article  CAS  PubMed  Google Scholar 

  • Delbridge AR, Strasser A (2015) The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 22:1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CK, Masutomi K, Hahn WC (2005) Telomerase: regulation, function and transformation. Crit Rev Oncol Hematol 54:85–93

    Article  PubMed  Google Scholar 

  • Dyson NJ (2016) RB1: a prototype tumor suppressor and an enigma. Genes Dev 30:1492–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eathiraj S, Palma R, Volckova E, Hirschi M, France DS, Ashwell MA, Chan TC (2011) Discovery of a novel mode of protein kinase inhibition characterized by the mechanism of inhibition of human mesenchymal-epithelial transition factor (c-Met) protein autophosphorylation by ARQ 197. J Biol Chem 286:20666–20676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echalier A, Endicott JA, Noble ME (2010) Recent developments in cyclin-dependent kinase biochemical and structural studies. Biochim Biophys Acta 1804:511–519

    Article  CAS  PubMed  Google Scholar 

  • Eder JP, Vande Woude GF, Boerner SA, Lorusso PM (2009) Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15:2207–2214

    Article  CAS  PubMed  Google Scholar 

  • Endres NF, Engel K, Das R, Kovacs E, Kuriyan J (2011) Regulation of the catalytic activity of the EGF receptor. Curr Opin Struct Biol 21:777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans LM, Cowey SL, Siegal GP, Hardy RW (2009) Stearate preferentially induces apoptosis in human breast cancer cells. Nutr Cancer 61:746–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattore L, Marra E, Pisanu ME, Noto A, De Vitis C, Belleudi F, Aurisicchio L, Mancini R, Torrisi MR, Ascierto PA, Ciliberto G (2013) Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. J Transl Med 11:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson KM (2008) Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 37:353–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, Nussinov R, Mattos C (2015) Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. Structure 23:505–516

    Article  CAS  PubMed  Google Scholar 

  • Franco AT, Corken A, Ware J (2015) Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126:582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3:1427–1438

    CAS  PubMed  Google Scholar 

  • Fuh G, Li B, Crowley C, Cunningham B, Wells JA (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 273:11197–11204

    Article  CAS  PubMed  Google Scholar 

  • Garrett TP, Mckern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Hoyne PA, Jorissen RN, Nice EC, Burgess AW, Ward CW (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110:763–773

    Article  CAS  PubMed  Google Scholar 

  • Gentile DR, Rathinaswamy MK, Jenkins ML, Moss SM, Siempelkamp BD, Renslo AR, Burke JE, Shokat KM (2017) Ras binder induces a modified switch-II pocket in GTP and GDP states. Cell Chem Biol 24(1455–1466):e14

    Google Scholar 

  • Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178–194

    Article  PubMed  Google Scholar 

  • Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455:633–637

    Article  CAS  PubMed  Google Scholar 

  • Gorfe AA, Hanzal-Bayer M, Abankwa D, Hancock JF, Mccammon JA (2007) Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 50:674–684

    Article  CAS  PubMed  Google Scholar 

  • Gorfe AA, Grant BJ, Mccammon JA (2008) Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. Structure 16:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal L, Muzumdar MD, Zhu AX (2013) Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res 19:2310–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigis KM (2017) KRAS alleles: the devil is in the detail. Trends Cancer 3:686–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11:689–708

    Article  CAS  PubMed  Google Scholar 

  • Harkisheimer M, Mason M, Shuvaeva E, Skordalakes E (2013) A motif in the vertebrate telomerase N-terminal linker of TERT contributes to RNA binding and telomerase activity and processivity. Structure 21:1870–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Headley MB, Bins A, Nip A, Roberts EW, Looney MR, Gerard A, Krummel MF (2016) Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531:513–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    Article  CAS  PubMed  Google Scholar 

  • Hoffman H, Rice C, Skordalakes E (2017) Structural analysis reveals the deleterious effects of telomerase mutations in bone marrow failure syndromes. J Biol Chem 292:4593–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS (2002) VEGF-trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99:11393–11398

    Article  CAS  PubMed  Google Scholar 

  • Houtgraaf JH, Versmissen J, Van Der Giessen WJ (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7:165–172

    Article  PubMed  Google Scholar 

  • Jacobs SA, Podell ER, Cech TR (2006) Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13:218–225

    Article  CAS  PubMed  Google Scholar 

  • Jager K, Walter M (2016) Therapeutic targeting of telomerase. Genes (Basel) 7

    Google Scholar 

  • Jiang Y, Xu W, Lu J, He F, Yang X (2001) Invasiveness of hepatocellular carcinoma cell lines: contribution of hepatocyte growth factor, c-met, and transcription factor Ets-1. Biochem Biophys Res Commun 286:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • John J, Frech M, Wittinghofer A (1988) Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation reaction. J Biol Chem 263:11792–11799

    CAS  PubMed  Google Scholar 

  • Johnson CW, Mattos C (2013) The allosteric switch and conformational states in Ras GTPase affected by small molecules. Enzymes 33 Pt A:41–67

    Article  PubMed  CAS  Google Scholar 

  • Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, Kuzmic P, Mattos C (2017) The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 292:12981–12993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CW, Lin Y-J, Reid D, Parker J, Pavlopoulos S, Dischinger P, Graveel C, Aguirre AJ, Steensma M, Haigis KM, Mattos C (2019) Isoform-specific destabilization of the active site reveals molecular mechanism of intrinsic activation of KRas G13D. Cell Rep 28(6):1538–1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalra S, Joshi G, Munshi A, Kumar R (2017) Structural insights of cyclin dependent kinases: implications in design of selective inhibitors. Eur J Med Chem 142:424–458

    Article  CAS  PubMed  Google Scholar 

  • Karagonlar ZF, Korhan P, Atabey N (2015) Targeting c-met in cancer by MicroRNAs: potential therapeutic applications in hepatocellular carcinoma. Drug Dev Res 76:357–367

    Article  CAS  PubMed  Google Scholar 

  • Kauke MJ, Traxlmayr MW, Parker JA, Kiefer JD, Knihtila R, Mcgee J, Verdine G, Mattos C, Wittrup KD (2017) An engineered protein antagonist of K-Ras/B-Raf interaction. Sci Rep 7:5831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelleher C, Teixeira MT, Forstemann K, Lingner J (2002) Telomerase: biochemical considerations for enzyme and substrate. Trends Biochem Sci 27:572–579

    Article  CAS  PubMed  Google Scholar 

  • Khan KH, Blanco-Codesido M, Molife LR (2014) Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol 90:200–219

    Article  PubMed  Google Scholar 

  • Koff JL, Ramachandiran S, Bernal-Mizrachi L (2015) A time to kill: targeting apoptosis in cancer. Int J Mol Sci 16:2942–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp HG, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69:7775–7783

    Article  CAS  PubMed  Google Scholar 

  • Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EF, Czabotar PE, Smith BJ, Deshayes K, Zobel K, Colman PM, Fairlie WD (2007) Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ 14:1711–1713

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Weng T, Zuo M, Wei Z, Chen M, Li Z (2016) Recent progress of cyclin-dependent kinase inhibitors as potential anticancer agents. Future Med Chem 8(17):2047–2076

    Article  CAS  PubMed  Google Scholar 

  • Lingner J, Cooper JP, Cech TR (1995) Telomerase and DNA end replication: no longer a lagging strand problem? Science 269:1533–1534

    Article  CAS  PubMed  Google Scholar 

  • Lowe M, Lane JD, Woodman PG, Allan VJ (2004) Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J Cell Sci 117:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Schulze-Gahmen U (2006) Toward understanding the structural basis of cyclin-dependent kinase 6 specific inhibition. J Med Chem 49:3826–3831

    Article  CAS  PubMed  Google Scholar 

  • Lue NF, Lin YC, Mian IS (2003) A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Mol Cell Biol 23:8440–8449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie SH, Clark AC (2012) Death by caspase dimerization. Adv Exp Med Biol 747:55–73

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcus K, Mattos C (2015) Direct attack on RAS: intramolecular communication and mutation-specific effects. Clin Cancer Res 21:1810–1818

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Nakajima W, Seike M, Gemma A, Tanaka N (2016) Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells. Biochem Biophys Res Commun 473:490–496

    Article  CAS  PubMed  Google Scholar 

  • Mctigue M, Murray BW, Chen JH, Deng YL, Solowiej J, Kania RS (2012) Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc Natl Acad Sci USA 109:18281–18289

    Article  CAS  PubMed  Google Scholar 

  • Meadows KL, Hurwitz HI (2012) Anti-VEGF therapies in the clinic. Cold Spring Harb Perspect Med 2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell M, Gillis A, Futahashi M, Fujiwara H, Skordalakes E (2010) Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17:513–518

    Article  CAS  PubMed  Google Scholar 

  • Mok TS (2011) Personalized medicine in lung cancer: what we need to know. Nat Rev Clin Oncol 8:661–668

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  CAS  PubMed  Google Scholar 

  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    Article  CAS  PubMed  Google Scholar 

  • Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, De Vos AM (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci USA 94:7192–7197

    Article  CAS  PubMed  Google Scholar 

  • Muller YA, Chen Y, Christinger HW, Li B, Cunningham BC, Lowman HB, De Vos AM (1998) VEGF and the fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface. Structure 6:1153–1167

    Article  CAS  PubMed  Google Scholar 

  • Munshi N, Jeay S, Li Y, Chen CR, France DS, Ashwell MA, Hill J, Moussa MM, Leggett DS, Li CJ (2010) ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther 9:1544–1553

    Article  CAS  PubMed  Google Scholar 

  • Neal SE, Eccleston JF, Hall A, Webb MR (1988) Kinetic analysis of the hydrolysis of GTP by p21N-ras. The basal GTPase mechanism. J Biol Chem 263:19718–19722

    CAS  PubMed  Google Scholar 

  • Nguyen THD, Tam J, Wu RA, Greber BJ, Toso D, Nogales E, Collins K (2018) Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 557:190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussinov R, Tsai CJ, Mattos C (2013) ‘Pathway drug cocktail’: targeting Ras signaling based on structural pathways. Trends Mol Med 19:695–704

    Article  PubMed  CAS  Google Scholar 

  • Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787

    Article  CAS  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  CAS  Google Scholar 

  • Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103:931–943

    Article  CAS  PubMed  Google Scholar 

  • Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J 9:2351–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parast CV, Mroczkowski B, Pinko C, Misialek S, Khambatta G, Appelt K (1998) Characterization and kinetic mechanism of catalytic domain of human vascular endothelial growth factor receptor-2 tyrosine kinase (VEGFR2 TK), a key enzyme in angiogenesis. Biochemistry 37:16788–16801

    Article  CAS  PubMed  Google Scholar 

  • Parker JA, Mattos C (2015) The Ras-membrane Interface: isoform-specific differences in the catalytic domain. Mol Cancer Res 13:595–603

    Article  CAS  PubMed  Google Scholar 

  • Parker MW, Pattus F (1993) Rendering a membrane protein soluble in water: a common packing motif in bacterial protein toxins. Trends Biochem Sci 18:391–395

    Article  CAS  PubMed  Google Scholar 

  • Parker JA, Volmar AY, Pavlopoulos S, Mattos C (2018) K-Ras populates conformational states differently from its isoform H-Ras and oncogenic mutant K-RasG12D. Structure 26:810

    Article  CAS  PubMed  Google Scholar 

  • Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25:409–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponzetto C, Bardelli A, Zhen Z, Maina F, Dalla Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77:261–271

    Article  CAS  PubMed  Google Scholar 

  • Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi XS, Guo XZ, Han GH, Li HY, Chen J (2015) MET inhibitors for treatment of advanced hepatocellular carcinoma: A review. World J Gastroenterol 21:5445–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimondi F, Orozco M, Fanelli F (2010) Deciphering the deformation modes associated with function retention and specialization in members of the Ras superfamily. Structure 18:402–414

    Article  CAS  PubMed  Google Scholar 

  • Rajabi M, Mousa SA (2017) The role of angiogenesis in Cancer treatment. Biomedicine 5

    Google Scholar 

  • Reddy EP, Reynolds RK, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1–6

    Article  CAS  PubMed  Google Scholar 

  • Rimassa L, Assenat E, Peck-Radosavljevic M, Pracht M, Zagonel V, Mathurin P, Rota Caremoli E, Porta C, Daniele B, Bolondi L, Mazzaferro V, Harris W, Damjanov N, Pastorelli D, Reig M, Knox J, Negri F, Trojan J, Lopez Lopez C, Personeni N, Decaens T, Dupuy M, Sieghart W, Abbadessa G, Schwartz B, Lamar M, Goldberg T, Shuster D, Santoro A, Bruix J (2018) Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol 19:682–693

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375:287–291

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2015) A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res 100:1–23

    Article  CAS  PubMed  Google Scholar 

  • Russo AA, Jeffrey PD, Pavletich NP (1996) Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3:696–700

    Article  CAS  PubMed  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–338

    Article  CAS  PubMed  Google Scholar 

  • Schneider MR, Wolf E (2009) The epidermal growth factor receptor ligands at a glance. J Cell Physiol 218:460–466

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Gahmen U, De Bondt HL, Kim SH (1996) High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J Med Chem 39:4540–4546

    Article  CAS  PubMed  Google Scholar 

  • Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–444

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Wright WE (2002) Telomerase: a target for cancer therapeutics. Cancer Cell 2:257–265

    Article  CAS  PubMed  Google Scholar 

  • Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14:611–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Sicheri F, Kuriyan J (1997) Structures of Src-family tyrosine kinases. Curr Opin Struct Biol 7:777–785

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Wang Z, Koo BK, Patel A, Cascio D, Collins K, Feigon J (2012) Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol Cell 47:16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smogorzewska A, De Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208

    Article  CAS  PubMed  Google Scholar 

  • Spencer-Smith R, Koide A, Zhou Y, Eguchi RR, Sha F, Gajwani P, Santana D, Gupta A, Jacobs M, Herrero-Garcia E, Cobbert J, Lavoie H, Smith M, Rajakulendran T, Dowdell E, Okur MN, Dementieva I, Sicheri F, Therrien M, Hancock JF, Ikura M, Koide S, O'bryan JP (2017) Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol 13:62–68

    Article  CAS  PubMed  Google Scholar 

  • Spoerner M, Herrmann C, Vetter IR, Kalbitzer HR, Wittinghofer A (2001) Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc Natl Acad Sci USA 98:4944–4949

    Article  CAS  PubMed  Google Scholar 

  • Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272

    Article  CAS  PubMed  Google Scholar 

  • Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C (2004) Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J 23:2325–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stieglitz B, Bee C, Schwarz D, Yildiz O, Moshnikova A, Khokhlatchev A, Herrmann C (2008) Novel type of Ras effector interaction established between tumour suppressor NORE1A and Ras switch II. EMBO J 27:1995–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Yang J (2010) Functional mechanisms for human tumor suppressors. J Cancer 1:136–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl 51:6140–6143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM, Laborde RR, Wassie E, Schimek L, Hanson CA, Gangat N, Wang X, Pardanani A (2015) A pilot study of the telomerase inhibitor Imetelstat for myelofibrosis. N Engl J Med 373:908–919

    Article  CAS  PubMed  Google Scholar 

  • Torok S, Rezeli M, Kelemen O, Vegvari A, Watanabe K, Sugihara Y, Tisza A, Marton T, Kovacs I, Tovari J, Laszlo V, Helbich TH, Hegedus B, Klikovits T, Hoda MA, Klepetko W, Paku S, Marko-Varga G, Dome B (2017) Limited tumor tissue drug penetration contributes to primary resistance against angiogenesis inhibitors. Theranostics 7:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11:834–848

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131–149

    Article  CAS  PubMed  Google Scholar 

  • Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Von Minckwitz G, Eidtmann H, Rezai M, Fasching PA, Tesch H, Eggemann H, Schrader I, Kittel K, Hanusch C, Kreienberg R, Solbach C, Gerber B, Jackisch C, Kunz G, Blohmer JU, Huober J, Hauschild M, Fehm T, Muller BM, Denkert C, Loibl S, Nekljudova V, Untch M (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 366:299–309

    Article  Google Scholar 

  • Wang Y, Zhang H, Gigant B, Yu Y, Wu Y, Chen X, Lai Q, Yang Z, Chen Q, Yang J (2016) Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J 283:102–111

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Article  CAS  PubMed  Google Scholar 

  • Welburn JPI, Jeyaprakash AA (2018) Mechanisms of mitotic kinase regulation: a structural perspective. Front Cell Dev Biol 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123:3190–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White LK, Wright WE, Shay JW (2001) Telomerase inhibitors. Trends Biotechnol 19:114–120

    Article  CAS  PubMed  Google Scholar 

  • Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, De Vos AM (1997) Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91:695–704

    Article  CAS  PubMed  Google Scholar 

  • Wyatt HD, West SC, Beattie TL (2010) InTERTpreting telomerase structure and function. Nucleic Acids Res 38:5609–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki H, Kijima H, Ohnishi Y, Abe Y, Oshika Y, Tsuchida T, Tokunaga T, Tsugu A, Ueyama Y, Tamaoki N, Nakamura M (1998) Inhibition of tumor growth by ribozyme-mediated suppression of aberrant epidermal growth factor receptor gene expression. J Natl Cancer Inst 90:581–587

    Article  CAS  PubMed  Google Scholar 

  • Yan N, Shi Y (2005) Mechanisms of apoptosis through structural biology. Annu Rev Cell Dev Biol 21:35–56

    Article  CAS  PubMed  Google Scholar 

  • Yewale C, Baradia D, Vhora I, Patil S, Misra A (2013) Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 34:8690–8707

    Article  CAS  PubMed  Google Scholar 

  • Yin XM, Oltvai ZN, Korsmeyer SJ (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Mattos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reid, D., Mattos, C. (2019). Targeting Cancer from a Structural Biology Perspective. In: Bose, K., Chaudhari, P. (eds) Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach. Springer, Singapore. https://doi.org/10.1007/978-981-32-9816-3_12

Download citation

Publish with us

Policies and ethics