Skip to main content

Advances in Bio-based Polymer Membranes for CO2 Separation

  • Chapter
  • First Online:
Book cover Advances in Sustainable Polymers

Abstract

The carbon dioxide (CO2) is the chief greenhouse gas accountable for global warming problems across the world. Various technologies are available for CO2 separation like absorption, adsorption, cryogenic distillation, etc., but membrane technology is preferred due to energy efficiency, cost-effective, corrosion-free, and compact modular design. The polymer membranes that are utilized to separate CO2 can either be derived from bio-based polymer or petroleum-based polymer. Bio-based polymers have advantages over petroleum-based as it uses renewable feedstock, less toxic, less carbon emission. The bio-based polymers used to synthesize CO2 selective membrane are chitosan (CS), cellulose, poly (lactic acid) (PLA), etc. Among them, CS is the thermally stable advance biopolymer and possesses good film forming ability. The CO2 separation that occurs in polymer membranes is based on either solution-diffusion or facilitated transport mechanism. Various attempts have been made to improve the CO2 permeance through CS membranes by incorporation of carriers, blending with other polymers or synthesizing mixed matrix membrane (MMM). The polymer membrane used to separate flue gas should be temperature, pressure, and moisture stable, and its performance should not deteriorate with time. Apart from these parameters, various other factors like sorption of gas molecules, gas flow rate, structural changes of the polymers, pH, the active layer thickness, etc. are also important. This chapter gives an overview of CO2 capture technologies, factor affecting the CO2 permeance along with CO2 separation using biopolymer via solution diffusion and facilitated transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carapellucci R, Milazzo A (2003) Membrane systems for CO2 capture and their integration with gas turbine plants. Proc Inst Mech Eng Part A J Power Energy 217:505–517. https://doi.org/10.1243/095765003322407557

    Article  CAS  Google Scholar 

  2. Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27. https://doi.org/10.1016/S1001-0742(08)60002-9

    Article  CAS  Google Scholar 

  3. Wang S, Li X, Wu H et al (2016) Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ Sci 9:1863–1890. https://doi.org/10.1039/C6EE00811A

    Article  CAS  Google Scholar 

  4. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Memb Sci 279:1–49. https://doi.org/10.1016/j.memsci.2005.12.062

    Article  CAS  Google Scholar 

  5. Shao P, Dal-Cin MM, Guiver MD, Kumar A (2013) Simulation of membrane-based CO2 capture in a coal-fired power plant. J Memb Sci 427:451–459. https://doi.org/10.1016/j.memsci.2012.09.044

    Article  CAS  Google Scholar 

  6. Adewole JK, Ahmad AL, Ismail S, Leo CP (2013) Current challenges in membrane separation of CO2 from natural gas: a review. Int J Greenhouse Gas Control 17:46–65. https://doi.org/10.1016/j.ijggc.2013.04.012

    Article  CAS  Google Scholar 

  7. Arneth A, Harrison SP, Zaehle S et al (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525

    Article  CAS  Google Scholar 

  8. Rahman FA, Aziz MMA, Saidur R et al (2017) Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew Sustain Energy Rev 71:112–126. https://doi.org/10.1016/j.rser.2017.01.011

    Article  CAS  Google Scholar 

  9. Steeneveldt R, Berger B, Torp TA (2006) CO2 capture and storage. Chem Eng Res Des 84:739–763. https://doi.org/10.1205/cherd05049

    Article  CAS  Google Scholar 

  10. Mccoy S, Rubin E (2008) An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int J Greenhouse Gas Control 2:219–229. https://doi.org/10.1016/S1750-5836(07)00119-3

    Article  CAS  Google Scholar 

  11. Stewart C, Hessami M-A (2005) A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420. https://doi.org/10.1016/j.enconman.2004.03.009

    Article  CAS  Google Scholar 

  12. Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenhouse Gas Control 2:9–20. https://doi.org/10.1016/S1750-5836(07)00094-1

    Article  CAS  Google Scholar 

  13. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652. https://doi.org/10.1126/science.1172246

    Article  CAS  Google Scholar 

  14. Jansen D, Gazzani M, Manzolini G et al (2015) Pre-combustion CO2 capture. Int J Greenhouse Gas Control 40:167–187. https://doi.org/10.1016/j.ijggc.2015.05.028

    Article  CAS  Google Scholar 

  15. Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62. https://doi.org/10.1016/j.applthermaleng.2009.05.005

    Article  CAS  Google Scholar 

  16. Li J, Zhang H, Gao Z et al (2017) CO2 capture with chemical looping combustion of gaseous fuels: an overview. Energy Fuels 31:3475–3524. https://doi.org/10.1021/acs.energyfuels.6b03204

    Article  CAS  Google Scholar 

  17. Ryden M, Lyngfelt A (2006) Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int J Hydrogen Energy 31:1271–1283. https://doi.org/10.1016/j.ijhydene.2005.12.003

    Article  CAS  Google Scholar 

  18. Fang H, Haibin L, Zengli Z (2009) Advancements in development of chemical-looping combustion: a review. Int J Chem Eng 2009:1–16. https://doi.org/10.1155/2009/710515

    Article  CAS  Google Scholar 

  19. Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460. https://doi.org/10.1016/j.cherd.2011.01.028

    Article  CAS  Google Scholar 

  20. Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45:8624–8632. https://doi.org/10.1021/es104291d

    Article  CAS  Google Scholar 

  21. Yamasaki A (2003) An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. J Chem Eng Japan 36:361–375. https://doi.org/10.1252/jcej.36.361

    Article  CAS  Google Scholar 

  22. Darde V, Thomsen K, van Well WJM, Stenby EH (2010) Chilled ammonia process for CO2 capture. Int J Greenhouse Gas Control 4:131–136. https://doi.org/10.1016/j.ijggc.2009.10.005

    Article  CAS  Google Scholar 

  23. Lu S, Ma Y, Zhu C, Shen S (2007) The enhancement of CO2 chemical absorption by K2CO3 aqueous solution in the presence of activated carbon particles [Supported by the National Natural Science Foundation of China (No. 20176036)]. Chinese J Chem Eng 15:842–846. https://doi.org/10.1016/S1004-9541(08)60012-9

    Article  CAS  Google Scholar 

  24. Kim YE, Choi JH, Nam SC, Il Yoon Y (2011) CO2 absorption characteristics in aqueous K2CO3/piperazine solution by NMR spectroscopy. Ind Eng Chem Res 50:9306–9313. https://doi.org/10.1021/ie102489r

    Article  CAS  Google Scholar 

  25. Dong W, Chen X, Yu F, Wu Y (2015) Na2CO3/MgO/Al2O3 solid sorbents for low-temperature CO2 capture. Energy Fuels 29:968–973. https://doi.org/10.1021/ef502400s

    Article  CAS  Google Scholar 

  26. Majchrowicz ME, Brilman DWF (Wim), Groeneveld MJ (2009) Precipitation regime for selected amino acid salts for CO2 capture from flue gases. Energy Procedia 1:979–984. https://doi.org/10.1016/j.egypro.2009.01.130

    Article  CAS  Google Scholar 

  27. Knudsen JN, Jensen JN, Vilhelmsen P-J, Biede O (2009) Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents. Energy Procedia 1:783–790. https://doi.org/10.1016/j.egypro.2009.01.104

    Article  CAS  Google Scholar 

  28. Drage TC, Smith KM, Pevida C et al (2009) Development of adsorbent technologies for post-combustion CO2 capture. Energy Procedia 1:881–884. https://doi.org/10.1016/j.egypro.2009.01.117

    Article  CAS  Google Scholar 

  29. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2:796–854. https://doi.org/10.1002/cssc.200900036

    Article  CAS  Google Scholar 

  30. Ho MT, Allinson GW, Wiley DE (2008) Reducing the cost of CO2 capture from flue gases using membrane technology. Ind Eng Chem Res 47:1562–1568. https://doi.org/10.1021/ie070541y

    Article  CAS  Google Scholar 

  31. Yu C-H (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res. https://doi.org/10.4209/aaqr.2012.05.0132

    Article  Google Scholar 

  32. Plaza MG, García S, Rubiera F et al (2010) Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chem Eng J 163:41–47. https://doi.org/10.1016/j.cej.2010.07.030

    Article  CAS  Google Scholar 

  33. Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55. https://doi.org/10.1039/C0EE00064G

    Article  CAS  Google Scholar 

  34. Liu X, Li J, Zhou L et al (2005) Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve. Chem Phys Lett 415:198–201. https://doi.org/10.1016/j.cplett.2005.09.009

    Article  CAS  Google Scholar 

  35. Chew T-L, Ahmad AL, Bhatia S (2010) Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Adv Colloid Interface Sci 153:43–57. https://doi.org/10.1016/j.cis.2009.12.001

    Article  CAS  Google Scholar 

  36. Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877. https://doi.org/10.1021/ja809459e

    Article  CAS  Google Scholar 

  37. Kuppler RJ, Timmons DJ, Fang Q-R et al (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066. https://doi.org/10.1016/j.ccr.2009.05.019

    Article  CAS  Google Scholar 

  38. Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Procedia 1:495–502. https://doi.org/10.1016/j.egypro.2009.01.066

    Article  CAS  Google Scholar 

  39. Hart A, Gnanendran N (2009) Cryogenic CO2 capture in natural gas. Energy Procedia 1:697–706. https://doi.org/10.1016/j.egypro.2009.01.092

    Article  CAS  Google Scholar 

  40. Lively RP, Koros WJ, Johnson JR (2012) Enhanced cryogenic CO2 capture using dynamically operated low-cost fiber beds. Chem Eng Sci 71:97–103. https://doi.org/10.1016/j.ces.2011.11.042

    Article  CAS  Google Scholar 

  41. Burdyny T, Struchtrup H (2010) Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy 35:1884–1897. https://doi.org/10.1016/j.energy.2009.12.033

    Article  CAS  Google Scholar 

  42. Moftakhari Sharifzadeh MM, Ebadi Amooghin A, Zamani Pedram M, Omidkhah M (2016) Time-dependent mathematical modeling of binary gas mixture in facilitated transport membranes (FTMs): a real condition for single-reaction mechanism. J Ind Eng Chem 39:48–65. https://doi.org/10.1016/j.jiec.2016.05.004

    Article  CAS  Google Scholar 

  43. Wong KC, Goh PS, Ismail AF (2016) Thin film nanocomposite: the next generation selective membrane for CO2 removal. J Mater Chem A 4:15726–15748. https://doi.org/10.1039/C6TA05145F

    Article  CAS  Google Scholar 

  44. Kentish S, Scholes C, Stevens G (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem Eng 1:52–66. https://doi.org/10.2174/2211334710801010052

    Article  Google Scholar 

  45. Wang M, Lawal A, Stephenson P et al (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89:1609–1624. https://doi.org/10.1016/j.cherd.2010.11.005

    Article  CAS  Google Scholar 

  46. Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628. https://doi.org/10.1016/j.energy.2010.02.030

    Article  CAS  Google Scholar 

  47. Luebke D, Myers C, Pennline H (2006) Hybrid membranes for selective carbon dioxide separation from fuel gas. Energy Fuels 20:1906–1913. https://doi.org/10.1021/ef060060b

    Article  CAS  Google Scholar 

  48. Shimekit B, Mukhtar H, Ahmad F, Maitra S (2009) Ceramic membranes for the separation of carbon dioxide-a review. Trans Indian Ceram Soc 68:115–138. https://doi.org/10.1080/0371750X.2009.11082166

    Article  CAS  Google Scholar 

  49. Ismail AF, Goh PS, Sanip SM, Aziz M (2009) Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep Purif Technol 70:12–26. https://doi.org/10.1016/j.seppur.2009.09.002

    Article  CAS  Google Scholar 

  50. Amedi HR, Aghajani M (2017) Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application. Microporous Mesoporous Mater 247:124–135. https://doi.org/10.1016/j.micromeso.2017.04.001

    Article  CAS  Google Scholar 

  51. Vinh-Thang H, Kaliaguine S (2013) Predictive models for mixed-matrix membrane performance: a review. Chem Rev 113:4980–5028. https://doi.org/10.1021/cr3003888

    Article  CAS  Google Scholar 

  52. Vinoba M, Bhagiyalakshmi M, Alqaheem Y et al (2017) Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep Purif Technol 188:431–450. https://doi.org/10.1016/j.seppur.2017.07.051

    Article  CAS  Google Scholar 

  53. Dong G, Zhang X, Zhang Y, Tsuru T (2018) Enhanced permeation through CO2-stable dual-inorganic composite membranes with tunable nano-architectured channels. ACS Sustain Chem Eng 6:8515–8524. https://doi.org/10.1021/acssuschemeng.8b00792

    Article  CAS  Google Scholar 

  54. Li W, Samarasinghe SASC, Bae TH (2018) Enhancing CO2/CH4separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8. J Ind Eng Chem, 4–11. https://doi.org/10.1016/j.jiec.2018.06.026

    Article  CAS  Google Scholar 

  55. Xin Q, Li Z, Li C et al (2015) Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J Mater Chem A 3:6629–6641. https://doi.org/10.1039/C5TA00506J

    Article  CAS  Google Scholar 

  56. LeBlanc OH, Ward WJ, Matson SL, Kimura SG (1980) Facilitated transport in ion-exchange membranes. J Memb Sci 6:339–343. https://doi.org/10.1016/S0376-7388(00)82175-4

    Article  CAS  Google Scholar 

  57. Way JD, Noble RD, Reed DL et al (1987) Facilitated transport of CO2 in ion exchange membranes. AIChE J 33:480–487. https://doi.org/10.1002/aic.690330313

    Article  CAS  Google Scholar 

  58. Takada K, Matsuya H, Masuda T, Higashimura T (1985) Gas permeability of polyacetylenes carrying substituents. J Appl Polym Sci 30:1605–1616. https://doi.org/10.1002/app.1985.070300426

    Article  CAS  Google Scholar 

  59. Rebattet L, Escoubes M, Genies E, Pineri M (1995) Effect of doping treatment on gas transport properties and on separation factors of polyaniline memebranes. J Appl Polym Sci 57:1595–1604. https://doi.org/10.1002/app.1995.070571307

    Article  CAS  Google Scholar 

  60. Xu Z, Dannenberg C, Springer J et al (2002) Novel poly(arylene ether) as membranes for gas separation. J Memb Sci 205:23–31. https://doi.org/10.1016/S0376-7388(02)00045-5

    Article  CAS  Google Scholar 

  61. Al-Masri M, Kricheldorf HR, Fritsch D (1999) New polyimides for gas separation. 1. Polyimides derived from substituted terphenylenes and 4,4′-(Hexafluoroisopropylidene) diphthalic anhydride. Macromolecules 32:7853–7858. https://doi.org/10.1021/ma9910742

    Article  CAS  Google Scholar 

  62. Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly(ethylene oxide). J Memb Sci 239:105–117. https://doi.org/10.1016/j.memsci.2003.08.031

    Article  CAS  Google Scholar 

  63. Mannan HA, Mukhtar H, Shaharun MS et al (2016) Polysulfone/poly(ether sulfone) blended membranes for CO2 separation. J Appl Polym Sci 133:n/a-n/a. https://doi.org/10.1002/app.42946

    Google Scholar 

  64. Quinn R, Appleby JB, Pez GP (1995) New facilitated transport membranes for the separation of carbon dioxide from hydrogen and methane. J Memb Sci 104:139–146. https://doi.org/10.1016/0376-7388(95)00021-4

    Article  CAS  Google Scholar 

  65. Shen J, Wu L, Wang D, Gao C (2008) Sorption behavior and separation performance of novel facilitated transport membranes for CO2/CH4 mixtures. Desalination 223:425–437. https://doi.org/10.1016/j.desal.2007.01.186

    Article  CAS  Google Scholar 

  66. Ho WSW, Sirkar KK (1992) Membrane handbook. Springer, Boston, MA

    Book  Google Scholar 

  67. Huang J, Zou J, Ho WSW (2008) Carbon dioxide capture using a CO2—selective facilitated transport membrane. Ind Eng Chem Res 47:1261–1267. https://doi.org/10.1021/ie070794r

    Article  CAS  Google Scholar 

  68. Prasad B, Mandal B (2017) CO2 separation performance by chitosan/tetraethylenepentamine/ poly(ether sulfone) composite membrane. J Appl Polym Sci 134:1–9. https://doi.org/10.1002/app.45206

    Article  CAS  Google Scholar 

  69. Bhown A, Cussler EL (1991) Mechanism for selective ammonia transport through poly(vinylammonium thiocyanate) membranes. J Am Chem Soc 113:742–749. https://doi.org/10.1021/ja00003a002

    Article  CAS  Google Scholar 

  70. Cussler EL, Aris R, Bhown A (1989) On the limits of facilitated diffusion. J Memb Sci 43:149–164. https://doi.org/10.1016/S0376-7388(00)85094-2

    Article  CAS  Google Scholar 

  71. Yoshikawa M, Ezaki T, Sanui K, Ogata N (1988) Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier. J Appl Polym Sci 35:145–154. https://doi.org/10.1002/app.1988.070350113

    Article  CAS  Google Scholar 

  72. Yoshikawa M, Fujimoto K, Kinugawa H et al (1995) Specialty polymeric membranes. V. Selective permeation of carbon dioxide through synthetic polymeric membranes having 2-(N, N-dimethyl)aminoethoxycarbonyl moiety. J Appl Polym Sci 58:1771–1778. https://doi.org/10.1002/app.1995.070581015

    Article  CAS  Google Scholar 

  73. Tong Z, Ho WSW (2017) Facilitated transport membranes for CO2 separation and capture. Sep Sci Technol 52:156–167. https://doi.org/10.1080/01496395.2016.1217885

    Article  CAS  Google Scholar 

  74. Idris Z, Eimer DA (2013) Representation of CO2 absorption in sterically hindered amines. Energy Procedia 51:247–252. https://doi.org/10.1016/j.egypro.2014.07.028

    Article  CAS  Google Scholar 

  75. Francisco GJ, Chakma A, Feng X (2007) Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. J Memb Sci 303:54–63. https://doi.org/10.1016/j.memsci.2007.06.065

    Article  CAS  Google Scholar 

  76. Zou J, Ho WSW (2006) CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Memb Sci 286:310–321. https://doi.org/10.1016/j.memsci.2006.10.013

    Article  CAS  Google Scholar 

  77. Kim T-J, Li B, Hägg M-B (2004) Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci B Polym Phys 42:4326–4336. https://doi.org/10.1002/polb.20282

    Article  CAS  Google Scholar 

  78. Nagel C, Günther-Schade K, Fritsch D et al (2002) Free volume and transport properties in highly selective polymer membranes. Macromolecules 35:2071–2077. https://doi.org/10.1021/ma011028d

    Article  CAS  Google Scholar 

  79. Deng L, Kim T-J, Hägg M-B (2009) Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J Memb Sci 340:154–163. https://doi.org/10.1016/j.memsci.2009.05.019

    Article  CAS  Google Scholar 

  80. Kim T-J, Vrålstad H, Sandru M, Hägg M-B (2013) Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Memb Sci 428:218–224. https://doi.org/10.1016/j.memsci.2012.10.009

    Article  CAS  Google Scholar 

  81. Li Y, Xin Q, Wu H et al (2014) Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy Environ Sci 7:1489. https://doi.org/10.1039/c3ee43163k

    Article  CAS  Google Scholar 

  82. Liu L, Chakma A, Feng X (2008) Gas permeation through water-swollen hydrogel membranes. J Memb Sci 310:66–75. https://doi.org/10.1016/j.memsci.2007.10.032

    Article  CAS  Google Scholar 

  83. Wang J, Wang S, Xin Q, Li Y (2017) Perspectives on water-facilitated CO2 capture materials. J Mater Chem A 5:6794–6816. https://doi.org/10.1039/C7TA01297G

    Article  CAS  Google Scholar 

  84. Kouketsu T, Duan S, Kai T et al (2007) PAMAM dendrimer composite membrane for CO2 separation: formation of a chitosan gutter layer. J Memb Sci 287:51–59. https://doi.org/10.1016/j.memsci.2006.10.014

    Article  CAS  Google Scholar 

  85. Prasad B, Mandal B (2018) Graphene-incorporated biopolymeric mixed-matrix membrane for enhanced CO2 separation by regulating the support pore filling. ACS Appl Mater Interfaces 10:27810–27820. https://doi.org/10.1021/acsami.8b09377

    Article  CAS  Google Scholar 

  86. Laroche G, Fitremann J, Gherardi N (2013) FTIR-ATR spectroscopy in thin film studies: the importance of sampling depth and deposition substrate. Appl Surf Sci 273:632–637. https://doi.org/10.1016/j.apsusc.2013.02.095

    Article  CAS  Google Scholar 

  87. Kousaalya AB, Biddappa BI, Krumm K et al (2018) Poly(lactic acid)/areca fiber laminate composites processed via film stacking technique. J Appl Polym Sci 135:1–12. https://doi.org/10.1002/app.45795

    Article  CAS  Google Scholar 

  88. Soudais Y, Moga L, Blazek J, Lemort F (2007) Coupled DTA-TGA-FT-IR investigation of pyrolytic decomposition of EVA, PVC and cellulose. J Anal Appl Pyrolysis 78:46–57. https://doi.org/10.1016/j.jaap.2006.04.005

    Article  CAS  Google Scholar 

  89. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  90. Yang JM, Su WY, Leu TL, Yang MC (2004) Evaluation of chitosan/PVA blended hydrogel membranes. J Memb Sci 236:39–51. https://doi.org/10.1016/j.memsci.2004.02.005

    Article  CAS  Google Scholar 

  91. Narducci R, Chailan J-F, Fahs A et al (2016) Mechanical properties of anion exchange membranes by combination of tensile stress-strain tests and dynamic mechanical analysis. J Polym Sci B Polym Phys 54:1180–1187. https://doi.org/10.1002/polb.24025

    Article  CAS  Google Scholar 

  92. Wu YB, Yu SH, Mi FL et al (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440. https://doi.org/10.1016/j.carbpol.2004.05.013

    Article  CAS  Google Scholar 

  93. Ray SS, Chen SS, Chang HM et al (2018) Enhanced desalination using a three-layer OTMS based superhydrophobic membrane for a membrane distillation process. RSC Adv 8:9640–9650. https://doi.org/10.1039/c8ra01043a

    Article  CAS  Google Scholar 

  94. Scholes CA, Kentish SE, Stevens GW (2009) The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture. Energy Procedia 1:311–317. https://doi.org/10.1016/j.egypro.2009.01.043

    Article  CAS  Google Scholar 

  95. Baker RW (2004) Membrane technology and applications

    Google Scholar 

  96. Wu J, Yuan Q (2002) Gas permeability of a novel cellulose membrane. J Memb Sci 204:185–194. https://doi.org/10.1016/S0376-7388(02)00037-6

    Article  CAS  Google Scholar 

  97. Houde AY, Krishnakumar B, Charati SG, Stern SA (1996) Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures. J Appl Polym Sci 62:2181–2192. https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13%3c2181:AID-APP1%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  98. Li J, Nagai K, Nakagawa T, Wang S (1995) Preparation of polyethyleneglycol (PEG) and cellulose acetate (CA) blend membranes and their gas permeabilities. J Appl Polym Sci 58:1455–1463. https://doi.org/10.1002/app.1995.070580906

    Article  CAS  Google Scholar 

  99. Puleo AC, Paul DR, Kelley SS (1989) The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. J Memb Sci 47:301–332. https://doi.org/10.1016/S0376-7388(00)83083-5

    Article  CAS  Google Scholar 

  100. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic Acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4:2899–2916. https://doi.org/10.1021/acssuschemeng.6b00321

    Article  CAS  Google Scholar 

  101. Jami’an WNR, Hasbullah H, Mohamed F et al (2015) Biodegradable gas separation membrane preparation by manipulation of casting parameters. Chem Eng Trans 43:1–6. https://doi.org/10.3303/CET1543185

    Article  Google Scholar 

  102. Bao L, Dorgan JR, Knauss D et al (2006) Gas permeation properties of poly(lactic acid) revisited. J Memb Sci 285:166–172. https://doi.org/10.1016/j.memsci.2006.08.021

    Article  CAS  Google Scholar 

  103. El-Azzami LA, Grulke EA (2008) Carbon dioxide separation from hydrogen and nitrogen by fixed facilitated transport in swollen chitosan membranes. J Memb Sci 323:225–234. https://doi.org/10.1016/j.memsci.2008.05.019

    Article  CAS  Google Scholar 

  104. Ito A, Sato M, Anma T (1997) Permeability of CO2 through chitosan membrane swollen by water vapor in feed gas. Angew Makromol Chemie 248:85–94. https://doi.org/10.1002/apmc.1997.052480105

    Article  CAS  Google Scholar 

  105. Bae SY, Lee KH, Yi SC et al (1998) CO2, N2 gas sorption and permeation behavior of chitosan membrane. Korean J Chem Eng 15:223–226. https://doi.org/10.1007/BF02707076

    Article  CAS  Google Scholar 

  106. Shen Y, Wang H, Liu J, Zhang Y (2015) Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 Capture. ACS Sustain Chem Eng 3:1819–1829. https://doi.org/10.1021/acssuschemeng.5b00409

    Article  CAS  Google Scholar 

  107. Casado-Coterillo C, Fernández-Barquín A, Zornoza B et al (2015) Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation. RSC Adv 5:102350–102361. https://doi.org/10.1039/C5RA19331A

    Article  CAS  Google Scholar 

  108. Santos E, Rodríguez-Fernández E, Casado-Coterillo C, Irabien Á (2016) Hybrid ionic liquid-chitosan membranes for CO2 separation: mechanical and thermal behavior. Int J Chem React Eng 14. https://doi.org/10.1515/ijcre-2014-0109

    Article  CAS  Google Scholar 

  109. Koros WJ, Chan AH, Paul DR (1977) Sorption and transport of various gases in polycarbonate. J Memb Sci 2:165–190. https://doi.org/10.1016/S0376-7388(00)83242-1

    Article  CAS  Google Scholar 

  110. David OC, Gorri D, Urtiaga A, Ortiz I (2011) Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane. J Memb Sci 378:359–368. https://doi.org/10.1016/j.memsci.2011.05.029

    Article  CAS  Google Scholar 

  111. Dhingra SS, Marand E (1998) Mixed gas transport study through polymeric membranes. J Memb Sci 141:45–63. https://doi.org/10.1016/S0376-7388(97)00285-8

    Article  CAS  Google Scholar 

  112. Wu F, Li L, Xu Z et al (2006) Transport study of pure and mixed gases through PDMS membrane. Chem Eng J 117:51–59. https://doi.org/10.1016/j.cej.2005.12.010

    Article  CAS  Google Scholar 

  113. Prasad B, Mandal B (2018) Moisture responsive and CO2 selective biopolymer membrane containing silk fibroin as a green carrier for facilitated transport of CO2. J Memb Sci 550:416–426. https://doi.org/10.1016/j.memsci.2017.12.061

    Article  CAS  Google Scholar 

  114. Chen Y, Ho WSW (2016) High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. J Memb Sci 514:376–384. https://doi.org/10.1016/j.memsci.2016.05.005

    Article  CAS  Google Scholar 

  115. Roy JP, Mishra MK, Misra A (2010) Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle. Energy 35:5049–5062. https://doi.org/10.1016/j.energy.2010.08.013

    Article  CAS  Google Scholar 

  116. Prasad B, Mandal B (2018) Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly(allylamine) blend for CO2/N2 separation. J Ind Eng Chem 66:419–429. https://doi.org/10.1016/j.jiec.2018.06.009

    Article  CAS  Google Scholar 

  117. Zhang Y, Sunarso J, Liu S, Wang R (2013) International Journal of Greenhouse Gas Control Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenhouse Gas Control 12:84–107. https://doi.org/10.1016/j.ijggc.2012.10.009

    Article  CAS  Google Scholar 

  118. Mondal A, Mandal B (2013) Synthesis and characterization of crosslinked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. J Memb Sci 446:383–394. https://doi.org/10.1016/j.memsci.2013.06.052

    Article  CAS  Google Scholar 

  119. Chen Y, Zhao L, Wang B et al (2016) Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation. J Memb Sci 497:21–28. https://doi.org/10.1016/j.memsci.2015.09.036

    Article  CAS  Google Scholar 

  120. Zhang L, Wang R (2012) Salting-out effect on facilitated transport membranes for CO2 separation: from fluoride salt to polyoxometalates. RSC Adv 2:9551. https://doi.org/10.1039/c2ra20882b

    Article  CAS  Google Scholar 

  121. Kobayashi S, Do SuhK, Shirokura Y (1989) Chelating ability of poly(vinylamine): effects of polyamine structure on chelation. Macromolecules 22:2363–2366. https://doi.org/10.1021/ma00195a062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnupada Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, B., Borgohain, R., Mandal, B. (2019). Advances in Bio-based Polymer Membranes for CO2 Separation. In: Katiyar, V., Gupta, R., Ghosh, T. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9804-0_13

Download citation

Publish with us

Policies and ethics