Skip to main content

Analysis of SRAM Cell for Low Power Operation and Its Noise Margin

  • Conference paper
  • First Online:
Book cover Advances in VLSI, Communication, and Signal Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 587))

Abstract

In recent years improvement in the design of SRAM cell increases drastically. The two major factors which have to be taken care are power dissipation and the noise margin of the SRAM cell. The power is subdivided into two groups that are switching power and standby power. The leakage current plays an important role in the power dissipation and has to be taken care. The noise margin also categorized as read margin and write margin. The purpose of this paper is to analyze and optimize the SRAM cell operation with respect to power and also measure the noise margin. The results show the low power operation of SRAM cell with relatively improved noise margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlov, A., Sachdev, M.: CMOS SRAM Circuit Design and Parametric Test in Nano-scaled Technologies: Process-Aware SRAM Design and Test. Springer Science (2008)

    Google Scholar 

  2. Farkhani, H., et al.: A new asymmetric 6T SRAM cell with a write assist technique in 65 nm CMOS technology. Elsevier Microelectron. J. 45, 1556–1565 (2014)

    Article  Google Scholar 

  3. Hassanzadeh, S., et al.: A novel low power 8T-cell sub-threshold SRAM with improved Read-SNM. In: International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 35–38, March (2013)

    Google Scholar 

  4. Dhilleswararao, P., et al.: High SNM 32 nm CNFET based 6T SRAM Cell design considering transistor ratio. In: International Conference on Electronics and Communication System (lCECS-2014), pp. 1–6, Feb (2014)

    Google Scholar 

  5. Wang, W., et al.: High SNM 6T CNFET SRAM cell design considering nanotube diameter and transistor ratio. In: IEEE International Conference on Electro/Information Technology (EIT), pp. 1–4, May (2011)

    Google Scholar 

  6. Madiwalar, B., et al.: Single bit-line 7T SRAM cell for low power and high SNM. In: International Multi-conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), pp. 223–228, March (2013)

    Google Scholar 

  7. Sil, A., et al.: A novel high write speed, low power, read-SNM-free 6T SRAM cell. In: Midwest Symposium on Circuits and Systems, pp. 771–774, Aug (2008)

    Google Scholar 

  8. Sil, A., et al.: A novel 8T SRAM cell with improved read-SNM. In: IEEE Northeast Workshop on Circuits and Systems, pp. 1289–1292, Aug (2007)

    Google Scholar 

  9. Solanki, S., et al.: A low-leakage single-ended 6T SRAM cell. In: 3rd International Conference on Emerging Trends in Engineering and Technology (ICETET), pp. 698–702, Nov (2010). ISSN 2157-0477

    Google Scholar 

  10. Chen, S.-Y., et al.: Single-ended disturb-free 5T loadless SRAM Cell using 90 nm CMOS process. In: IEEE International Conference on IC Design & Technology (ICICDT), pp. 1–4, June (2012). ISBN 978-1-4673-0146-6

    Google Scholar 

  11. Giraud, B., et al.: A novel 4T asymmetric single-ended SRAM cell in sub-32 nm double gate technology. In: IEEE International Symposium on Circuits and Systems, pp. 1906–1909, May (2008). ISBN 978-1-4244-1683-7

    Google Scholar 

  12. Singh, J., et al.: A subthreshold single ended I/O SRAM cell design for nanometer CMOS technologies. In: IEEE International SOC Conference, pp. 243–246, Sept (2008). ISBN 978-1-4244-2596-9

    Google Scholar 

  13. Kushwah, C.B., et al.: A single-ended with dynamic feedback control 8T subthreshold SRAM cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1–5 (2015). ISSN: 1063-8210

    Google Scholar 

  14. Hobson, R.F.: A new single-ended SRAM cell with write-assist. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(2), 173–181 (2007). ISSN 1063-8210

    Article  Google Scholar 

  15. Yang, Y., et al.: Single-ended 9T SRAM cell for near-threshold voltage operation with enhanced. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (99), 1–5 (2014). ISSN: 1063-8210

    Google Scholar 

  16. Li, Q., et al.: A 5.61 pJ, 16 kb 9T SRAM with single-ended equalized bitlines and fast local write-back for cell stability improvement. In: Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 201–204, Sept (2012). ISBN 978-1-4673-1707-8

    Google Scholar 

  17. Wen, L., et al.: Single-ended, robust 8T SRAM cell for low-voltage operation. Microelectron. J. 44(8), 718–728 (2013)

    Article  Google Scholar 

  18. Anand, N., et al.: Highly stable subthreshold single-ended 7T SRAM cell. In: 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN), pp. 1–4, Dec (2014). ISBN 978-1-4799-6985-2

    Google Scholar 

  19. Ichikawa, T., et al.: A new analytical model of SRAM cell stability in low-voltage operation. IEEE Trans. Electron Devices 43(1), 54–61 (2002). ISSN: 0018-9383

    Article  Google Scholar 

  20. Chang, L., et al.: An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches. Solid-State Circuits 43(4), 956–963 (2008). ISSN: 0018-9200

    Google Scholar 

  21. Mann, R.W., et al.: Impact of circuit assist methods on margin and performance in 6T SRAM. Solid State Electron. J. 54, 1398–1407 (2010)

    Article  Google Scholar 

  22. Zhang, K., et al.: A 3-GHz 70 Mb SRAM in 65 nm CMOS technology with integrated column-based dynamic power supply. In: IEEE International Solid-State Circuits Conference, pp. 474–611, February (2005)

    Google Scholar 

  23. Kaur, R., et al.: A 6T SRAM cell based pipelined 2R/1W memory design using 28 nm UTBB-FDSOI. In: 28th IEEE International System-on-Chip Conference (SOCC), pp. 310–315, September (2015)

    Google Scholar 

  24. Sinangil, M.E., et al.: A 45 nm 0.5 V 8T column-interleaved SRAM with on-chip reference selection loop for sense-amplifier. In: IEEE Asian Solid-State Circuits Conference, pp. 225–228, November (2009)

    Google Scholar 

  25. Wang, D.P., et al.: A 45 nm dual-port SRAM with write and read capability enhancement at low voltage. In: IEEE International SOC Conference, pp. 211–214, September (2007)

    Google Scholar 

  26. HSPICE user manual simulation and analysis

    Google Scholar 

  27. Predictive Technology Model (PTM). http://ptm.asu.edu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Ojha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ojha, S.K., Singh, O.P., Mishra, G.R., Vaya, P.R. (2020). Analysis of SRAM Cell for Low Power Operation and Its Noise Margin. In: Dutta, D., Kar, H., Kumar, C., Bhadauria, V. (eds) Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, vol 587. Springer, Singapore. https://doi.org/10.1007/978-981-32-9775-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9775-3_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9774-6

  • Online ISBN: 978-981-32-9775-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics