Skip to main content

Numerical Measurement of Oscillating Parameters of IMPATT Using Group IV and Group III–V Materials

  • Conference paper
  • First Online:
Advances in VLSI, Communication, and Signal Processing

Abstract

With the help of numerical approach, we have determined the oscillating parameters of Double Drift Region (DDR) Impact Avalanche Transit Time (IMPATT) diode oscillator using different semiconducting materials at Ka band (26.5–40 GHz). The materials used are silicon, germanium, gallium arsenide, indium phosphide, and wurtzite gallium nitride. Avalanche region of IMPATT behaves as an LC parallel circuit. Therefore, inductance, capacitance, and resonant frequency are computed in the avalanche zone by taking all materials individually as substrate elements. Numerically measured inductance and capacitance profiles are in good agreement with earlier reported experimental curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Midford, T.A., Bernick, R.L.: Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech. 27, 483–492 (1979). https://doi.org/10.1109/TMTT.1979.1129653

    Article  Google Scholar 

  2. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, pp. 466–488. Wiley, New Jersey (2007)

    Google Scholar 

  3. Read, W.: A proposed high-frequency negative-resistance diode. Bell Syst. Tech. J. 37, 401–446 (1958). https://doi.org/10.1002/j.1538-7305.1958.tb01527.x

    Article  Google Scholar 

  4. Johnston, R.L., DeLoach Jr., B.C., Cohen, B.G.: A silicon diode microwave oscillator. Bell Syst. Tech. J. 44, 369–372 (1965). https://doi.org/10.1002/j.1538-7305.1965.tb01667.x

    Article  Google Scholar 

  5. Lee, C.A., Batdorf, R.L., Wiegmann, W., Kaminski, G.: The read diode—an avalanching, transit-time, negative resistance oscillator. Appl. Phys. Lett. 6, 89–91 (1965). https://doi.org/10.1063/1.1754180

    Article  Google Scholar 

  6. Shockley, W.: Negative resistance arising from transit time in semiconductor diode. Bell Syst. Tech. J. 33, 799–826 (1954). https://doi.org/10.1002/j.1538-7305.1954.tb03742.x

    Article  Google Scholar 

  7. DeLoach Jr., B.C.: The IMPATT story. IEEE Trans. Electron Devices 23, 657–660 (1976). https://doi.org/10.1109/T-ED.1976.18469

    Article  Google Scholar 

  8. Misawa, T.: Negative resistance in p-n junction under avalanche breakdown conditions, Part I. IEEE Trans. Electron Devices 13, 137–143 (1966). https://doi.org/10.1109/T-ED.1966.15647

    Article  Google Scholar 

  9. Misawa, T.: Negative resistance in p-n junction under avalanche breakdown conditions, Part II. IEEE Trans. Electron Devices 13, 143–151 (1966). https://doi.org/10.1109/T-ED.1966.15648

    Article  Google Scholar 

  10. Gummel, H.K., Blue, J.L.: A small signal theory of avalanche noise in IMPATT diodes. IEEE Trans. Electron Devices 14, 569–580 (1967). https://doi.org/10.1109/T-ED.1967.16005

    Article  Google Scholar 

  11. Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE 59, 1140–1154 (1971). https://doi.org/10.1109/PROC.1971.8360

    Article  Google Scholar 

  12. Gilden, M., Hines, M.E.: Electronic tuning effects in the read microwave avalanche diode. IEEE Trans. Electron Devices 13, 169–175 (1966). https://doi.org/10.1109/T-ED.1966.15652

    Article  Google Scholar 

  13. Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014). https://doi.org/10.1007/s13204-012-0172-y

    Article  Google Scholar 

  14. Ghivela, G.C., Sengupta, J., Mitra, M.: Ka band noise comparison for Si, Ge, GaAs, InP, WzGaN, 4H-SiC based IMPATT diode. Int. J. Electron. Lett. 7, 107–116 (2019). https://doi.org/10.1080/21681724.2018.1460869

    Article  Google Scholar 

  15. Sengupta, J., Ghivela, G.C., Gajbhiye, A., Mitra, M.: Measurement of noise and efficiency of 4H-SiC IMPATT diode at Ka band. Int. J Electron. Lett. 4, 134–140 (2016). https://doi.org/10.1080/21681724.2014.966774

    Article  Google Scholar 

  16. Sengupta, J., Ghivela, G.C., Mitra, M.: Dynamic characterization and noise analysis of 4H-SiC IMPATT diode at Ka band. Int. J. Soft Comput. Eng. 4, 145–149 (2014)

    Google Scholar 

  17. Ghivela, G.C., Sengupta, J.: Prospects of impact avalanche transit time diode based on chemical vapor deposited diamond substrate. J. Electron. Mater. 48, 1044–1053 (2019). https://doi.org/10.1007/s11664-018-6821-5

    Article  Google Scholar 

  18. Sengupta, J., Ghivela, G.C., Gajbhiye, A., Jothe, B., Mitra, M.: Temperature dependence of 4H-SiC IMPATT diode at Ka band. Int. J. Electr. Electron. Comput. Syst. 19, 1–5 (2014)

    Google Scholar 

  19. Cullen, A.L., Forrest, J.R.: Analytic theory of the IMPATT diode and its application to calculations of oscillator locking characteristics. Proc. IEE 121, 1467–1474 (1974). https://doi.org/10.1049/piee.1974.0308

    Article  Google Scholar 

  20. Ghivela, G.C., Sengupta, J., Mitra, M.: Space charge effect of IMPATT diode using Si, Ge, GaAs, InP, WzGaN, 4H-SiC at Ka band. IETE J. Educ. 58, 61–66 (2017). https://doi.org/10.1080/09747338.2017.1378132

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Electronics and Communication Engineering, VNIT, Nagpur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Chandra Ghivela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghivela, G.C., Kumar, P., Sengupta, J. (2020). Numerical Measurement of Oscillating Parameters of IMPATT Using Group IV and Group III–V Materials. In: Dutta, D., Kar, H., Kumar, C., Bhadauria, V. (eds) Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, vol 587. Springer, Singapore. https://doi.org/10.1007/978-981-32-9775-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9775-3_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9774-6

  • Online ISBN: 978-981-32-9775-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics