Abstract
Reverse phase protein array (RPPA) is a functional proteomics technology amenable to moderately high throughputs of samples and antibodies. The University of Texas MD Anderson Cancer Center RPPA Core Facility has implemented various processes and techniques to maximize RPPA throughput; key among them are maximizing array configuration and relying on database management and automation. One major tool used by the RPPA Core is a semi-automated RPPA process management system referred to as the RPPA Pipeline. The RPPA Pipeline, developed with the aid of MD Avnderson’s Department of Bioinformatics and Computational Biology and InSilico Solutions, has streamlined sample and antibody tracking as well as advanced quality control measures of various RPPA processes. This chapter covers RPPA Core processes associated with the RPPA Pipeline workflow from sample receipt to sample printing to slide staining and RPPA report generation that enables the RPPA Core to process at least 13,000 samples per year with approximately 450 individual RPPA-quality antibodies. Additionally, this chapter will cover results of large-scale clinical sample processing, including The Cancer Genome Atlas Project and The Cancer Proteome Atlas.
Keywords
- Reverse phase protein array (RPPA)
- RPPA Pipeline
- SuperCurve
- The Cancer Genome Atlas (TCGA)
- The Cancer Proteome Atlas (TCPA)
This is a preview of subscription content, access via your institution.
Buying options













References
Akbani R, Ng PKS, Werner HMJ, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang JY, Yoshihara K, Li J, Ling S, Seviour EG, Ram PT, Minna JD, Diao L, Tong P, Heymach JV, Hill SM, Dondelinger F, Städler N, Byers LA, Meric-Bernstam F, Weinstein JN, Broom BM, Verhaak RGW, Liang H, Mukherjee S, Lu Y, Mills GB (2014) A pan-cancer proteomic perspective on the cancer genome atlas. Nat Commun 5:3887. https://doi.org/10.1038/ncomms4887
Broom BM, Ryan MC, Brown RE, Ikeda F, Stucky M, Kane DW, Melott J, Wakefield C, Casasent TD, Akbani R, Weinstein JN (2017) A galaxy implementation of next-generation clustered heatmaps for interactive exploration of molecular profiling data. Cancer Res 77(21):e23–e26
Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, Akbani R, Bowlby R, Wong CK, Wiznerowicz M, Sanchez-Vega F, Robertson AG, Schneider BG, Lawrence MS, Noushmehr H, Malta TM, Cancer Genome Atlas N, Stuart JM, Benz CC, Laird PW (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173(2):291–304.e296
Hu J, He H, Baggerly KA, Coombes KR, Hennessy BTJ, Mills GB (2007) Non-parametric quantification of protein lysate arrays. Bioinformatics 23(15):1986–1994
Ju Z, Liu W, Roebuck PL, Siwak DR, Zhang N, Lu Y, Davies MA, Akbani R, Weinstein JN, Mills GB, Coombes KR (2015) Development of a robust classifier for quality control of reverse-phase protein arrays. Bioinformatics 31(6):912–918
Kaushik P, Molinelli EJ, Miller ML, Wang W, Korkut A, Liu W, Ju Z, Lu Y, Mills G, Sander C (2014) Spatial normalization of reverse phase protein array data. PLoS One 9(12):e97213
Kornblau SM, Coombes, KR (2011) Use of reverse phase protein microarrays to study protein expression in leukemia: technical and methodological lessons learned. In: Korf U (ed) Protein microarrays: methods and protocols, methods in molecular biology, vol 785, pp 141–155
Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, Yang JY, Broom BM, Verhaak RGW, Kane DW, Wakefield C, Weinstein JN, Mills GB, Liang H (2013) TCPA: a resource for cancer functional proteomics data. Nat Methods 10(11):1046–1047
Li J, Zhao W, Akbani R, Liu W, Ju Z, Ling S, Vellano CP, Roebuck P, Yu Q, Eterovic AK, Byers LA, Davies MA, Deng W, Gopal YN, Chen G, von Euw EM, Slamon D, Conklin D, Heymach JV, Gazdar AF, Minna JD, Myers JN, Lu Y, Mills GB, Liang H (2017) Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell 31(2):225–239
Liu W, Ju Z, Lu Y, Mills GB, Akbani R (2014) A comprehensive comparison of normalization methods for loading control and variance stabilization of reverse-phase protein array data. Cancer Informat 13:109–117
Neeley ES, Kornblau SM, Coombes KR, Baggerly KA (2009) Variable slope normalization of reverse phase protein arrays. Bioinformatics 25(11):1384–1389
Neeley ES, Baggerly KA, Kornblau SM (2010) Surface adjustment of reverse phase protein arrays using positive control spots. Cancer Informat 2012(11):77–86
Sun M, Lai D, Zhang L, Huang X (2015) Modified SuperCurve method for analysis of reverse-phase protein array data. J Comput Biol 22(8):765–769
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Siwak, D.R., Li, J., Akbani, R., Liang, H., Lu, Y. (2019). Analytical Platforms 3: Processing Samples via the RPPA Pipeline to Generate Large-Scale Data for Clinical Studies. In: Yamada, T., Nishizuka, S., Mills, G., Liotta, L. (eds) Reverse Phase Protein Arrays. Advances in Experimental Medicine and Biology, vol 1188. Springer, Singapore. https://doi.org/10.1007/978-981-32-9755-5_7
Download citation
DOI: https://doi.org/10.1007/978-981-32-9755-5_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-32-9754-8
Online ISBN: 978-981-32-9755-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)