Skip to main content

Recent Developments in the Catalytic Asymmetric Sulfoxidation Reactions

  • Chapter
  • First Online:
Frontiers of Green Catalytic Selective Oxidations

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Chiral sulfoxides constitute an important class of organic compounds. The progress in the asymmetric oxidation of prochiral sulfides to sulfoxides over the last decade, from 2009 to 2018, is reviewed. Titanium- and vanadium-containing complexes are most frequently used as catalysts for sulfoxidation reactions. Considerable attention is paid to the asymmetric synthesis of chiral sulfoxides using complexes with other metals, including manganese, iron, molybdenum, copper, tungsten, and aluminum, as well as to organocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Mahony GE, Ford A, Maguire AR (2013) Asymmetric oxidation of sulfides. J Sulfur Chem 34:301–341. https://doi.org/10.1080/17415993.2012.725247

    Article  CAS  Google Scholar 

  2. Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A (2018) Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 47:1307–1350. https://doi.org/10.1039/c6cs00703a

    Article  CAS  PubMed  Google Scholar 

  3. Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P (2017) Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: applications in asymmetric synthesis. Chem Rev 117:4147–4181. https://doi.org/10.1021/acs.chemrev.6b00517

    Article  CAS  PubMed  Google Scholar 

  4. O’Mahony GE, Kelly P, Lawrence SE, Maguire AR (2011) Synthesis of enantioenriched sulfoxides. Arkivoc 2011:1–110. https://doi.org/10.3998/ark.5550190.0012.101

    Article  Google Scholar 

  5. Volcho KP, Salakhutdinov NF, Tolstikov AG (2003) Metal complexes in asymmetric oxidation of sulfides. Russ J Org Chem 39:1537–1552

    Article  CAS  Google Scholar 

  6. Takaishi Y, Murakami Y, Uda M, Ohashi T, Hamamura N, Kido M, Kadota S (1997) Hydroxyphenylazoformamide derivatives from Calvatia craniformis. Phytochemistry 45:997–1001. https://doi.org/10.1016/S0031-9422(97)00066-6

    Article  CAS  Google Scholar 

  7. Ding HX, Leverett CA, Kyne RE, Liu KKC, Fink SJ, Flick AC, O’Donnell CJ (2015) Synthetic approaches to the 2013 new drugs. Bioorganic Med Chem 23:1895–1922. https://doi.org/10.1016/j.bmc.2015.02.056

    Article  CAS  Google Scholar 

  8. Volcho KP, Salakhutdinov NF (2009) Asymmetric oxidation of sulfides catalyzed by titanium and vanadium complexes in the synthesis of biologically active sulfoxides. Russ Chem Rev 78. https://doi.org/10.1070/rc2009v078n05abeh004023

    Article  CAS  Google Scholar 

  9. Bühler S, Goettert M, Schollmeyer D, Albrecht W, Laufer SA (2011) Chiral sulfoxides as metabolites of 2-thioimidazole-based p38α mitogen-activated protein kinase inhibitors: enantioselective synthesis and biological evaluation. J Med Chem 54:3283–3297. https://doi.org/10.1021/jm101623p

    Article  CAS  PubMed  Google Scholar 

  10. Laine L, Fennerty MB, Osato M, Sugg MSJ, Suchower L, Probst P, Levine JG (2000) Esomeprazole-based Helicobacter pylori eradication therapy and the effect of antibiotic resistance: results of three US multicenter, double-blind trials. Am J Gastroenterol 95:3393–3398. https://doi.org/10.1111/j.1572-0241.2000.03349.x

    Article  CAS  PubMed  Google Scholar 

  11. Wojaczyńska E, Wojaczyński J (2010) Enantioselective synthesis of sulfoxides: 2000–2009. Chem Rev 110:4303–4356. https://doi.org/10.1021/cr900147h

    Article  CAS  PubMed  Google Scholar 

  12. Srour H, Le Maux P, Chevance S, Simonneaux G (2013) Metal-catalyzed asymmetric sulfoxidation, epoxidation and hydroxylation by hydrogen peroxide. Coord Chem Rev 257:3030–3050. https://doi.org/10.1016/j.ccr.2013.05.010

    Article  CAS  Google Scholar 

  13. Pitchen P, Dunach E, Deshmukh MN, Kagan HB (1984) An efficient asymmetric oxidation of sulfides to sulfoxides. J Am Chem Soc 106:8188–8193. https://doi.org/10.1021/ja00338a030

    Article  CAS  Google Scholar 

  14. Di Furia F, Modena G, Seraglia R (1984) Synthesis of chiral sulfoxides by metal-catalyzed oxidation with t-butyl hydroperoxide. Synthesis (Stuttg) 1984:325–326. https://doi.org/10.1055/s-1984-30829

    Article  Google Scholar 

  15. Katsuki T, Sharpless KB (1980) 5974 Table. J Am Chem Soc 102:5976–5978. https://doi.org/10.1021/ja00538a077

    Article  Google Scholar 

  16. Shi H, Yu C, He J (2010) Constraining titanium tartrate in the interlayer space of layered double hydroxides induces enantioselectivity. J Catal 271:79–87. https://doi.org/10.1016/j.jcat.2010.02.006

    Article  CAS  Google Scholar 

  17. Shi H, Yu C, He J (2010) On the structure of layered double hydroxides intercalated with titanium tartrate complex for catalytic asymmetric sulfoxidation. J Phys Chem C 114:17819–17828. https://doi.org/10.1021/jp106931g

    Article  CAS  Google Scholar 

  18. Shi H, He J (2011) Orientated intercalation of tartrate as chiral ligand to impact asymmetric catalysis. J Catal 279:155–162. https://doi.org/10.1016/j.jcat.2011.01.012

    Article  CAS  Google Scholar 

  19. Wang Y, Wang M, Wang L, Wang Y, Wang X, Sun L (2011) Asymmetric oxidation of sulfides with H2O2catalyzed by titanium complexes of Schiff bases bearing a dicumenyl salicylidenyl unit. Appl Organomet Chem 25:325–330. https://doi.org/10.1002/aoc.1762

    Article  CAS  Google Scholar 

  20. Bera PK, Ghosh D, Abdi SHR, Khan NUH, Kureshy RI, Bajaj HC (2012) Titanium complexes of chiral amino alcohol derived Schiff bases as efficient catalysts in asymmetric oxidation of prochiral sulfides with hydrogen peroxide as an oxidant. J Mol Catal A: Chem 361–362:36–44. https://doi.org/10.1016/j.molcata.2012.04.014

    Article  CAS  Google Scholar 

  21. Adão P, Avecilla F, Bonchio M, Carraro M, Costa Pessoa J, Correia I (2010) Titanium(IV)-salan catalysts for asymmetric sulfoxidation with hydrogen peroxide. Eur J Inorg Chem 5568–5578. https://doi.org/10.1002/ejic.201000792

    Article  Google Scholar 

  22. Bryliakov KP, Talsi EP (2008) Titanium-salan-catalyzed asymmetric oxidation of sulfides and kinetic resolution of sulfoxides with H2O2 as the oxidant. Eur J Org Chem 3369–3376. https://doi.org/10.1002/ejoc.200800277

    Article  Google Scholar 

  23. Bryliakov KP, Talsi EP (2011) Catalytic enantioselective oxidation of bulky alkyl aryl thioethers with H2O2 over titanium-salan catalysts. Eur J Org Chem 4693–4698. https://doi.org/10.1002/ejoc.201100557

    Article  CAS  Google Scholar 

  24. Talsi EP, Bryliakov KP (2017) Ti-Salan catalyzed asymmetric sulfoxidation of pyridylmethylthiobenzimidazoles to optically pure proton pump inhibitors. Catal Today 279:84–89. https://doi.org/10.1016/j.cattod.2016.03.006

    Article  CAS  Google Scholar 

  25. Cotton H, Elebring T, Larsson M, Li L, Sörensen H, Von Unge S (2000) Asymmetric synthesis of esomeprazole. Tetrahedron Asymmetry 11:3819–3825. https://doi.org/10.1016/S0957-4166(00)00352-9

    Article  CAS  Google Scholar 

  26. Khomenko TM, Volcho KP, Komarova NI, Salakhutdinov NF (2008) An efficient procedure for the synthesis of Esomeprazole using a titanium complex with two chiral ligands. Russ J Org Chem 44:124–127. https://doi.org/10.1007/s11178-008-1016-9

    Article  CAS  Google Scholar 

  27. Talsi EP, Rybalova TV, Bryliakov KP (2015) Isoinversion behavior in the enantioselective oxidations of pyridylmethylthiobenzimidazoles to chiral proton pump inhibitors on titanium salalen complexes. ACS Catal 5:4673–4679. https://doi.org/10.1021/acscatal.5b01212

    Article  CAS  Google Scholar 

  28. Talsi EP, Bryliakov KP (2013) Titanium-salan-catalyzed asymmetric sulfoxidations with H2O2: design of more versatile catalysts. Appl Organomet Chem 27:239–244. https://doi.org/10.1002/aoc.2968

    Article  CAS  Google Scholar 

  29. Gao M, Tan R, Hao P, Zhang Y, Deng J, Yin D (2017) Ultraviolet-responsive self-assembled metallomicelles for photocontrollable catalysis of asymmetric sulfoxidation in water. RSC Adv 7:54570–54580. https://doi.org/10.1039/c7ra11022g

    Article  CAS  Google Scholar 

  30. Zhang Y, Tan R, Zhao G, Luo X, Xing C, Yin D (2016) Thermo-responsive self-assembled metallomicelles accelerate asymmetric sulfoxidation in water. J Catal 335:62–71. https://doi.org/10.1016/j.jcat.2015.12.012

    Article  CAS  Google Scholar 

  31. Xing C, Deng J, Tan R, Gao M, Hao P, Yin D, Yin D (2017) Cooperative chiral salen TiIVcatalyst supported on ionic liquid-functionalized graphene oxide accelerates asymmetric sulfoxidation in water. Catal Sci Technol 7:5944–5952. https://doi.org/10.1039/c7cy01511a

    Article  CAS  Google Scholar 

  32. Zhu C, Chen X, Yang Z, Du X, Liu Y, Cui Y (2013) Chiral microporous Ti(salan)-based metal-organic frameworks for asymmetric sulfoxidation. Chem Commun 49:7120–7122. https://doi.org/10.1039/c3cc43225d

    Article  CAS  Google Scholar 

  33. Chen Y, Tan R, Zhang Y, Zhao G, Yin D (2015) Dendritic chiral salen titanium(IV) catalysts enforce the cooperative catalysis of asymmetric sulfoxidation. ChemCatChem 7:4066–4075. https://doi.org/10.1002/cctc.201500900

    Article  CAS  Google Scholar 

  34. Zhao G, Tan R, Zhang Y, Luo X, Xing C, Yin D (2016) Cooperative chiral salen Ti IV catalysts with built-in phase-transfer capability accelerate asymmetric sulfoxidation in water. RSC Adv 6:24704–24711. https://doi.org/10.1039/c6ra01130f

    Article  Google Scholar 

  35. Zhang Y, Wang W, Fu W, Zhang M, Tang Z, Tan R, Yin D (2018) Titanium (iv)-folded single-chain polymeric nanoparticles as artificial metalloenzyme for asymmetric sulfoxidation in water. Chem Commun 54:9430–9433. https://doi.org/10.1039/c8cc05590d

    Article  CAS  Google Scholar 

  36. da Silva JAL, da Silva JJRF, Pombeiro AJL (2011) Oxovanadium complexes in catalytic oxidations. Coord Chem Rev 255:2232–2248. https://doi.org/10.1016/j.ccr.2011.05.009

    Article  CAS  Google Scholar 

  37. Pellissier H (2015) Recent advances in enantioselective vanadium-catalyzed transformations. Coord Chem Rev 284:93–110. https://doi.org/10.1016/j.ccr.2014.09.014

    Article  CAS  Google Scholar 

  38. Bolm C (2003) Vanadium-catalyzed asymmetric oxidations. Coord Chem Rev 237:245–256. https://doi.org/10.1016/S0010-8545(02)00249-7

    Article  CAS  Google Scholar 

  39. Zeng Q, Gao Y, Dong J, Weng W, Zhao Y (2011) Vanadium-catalyzed enantioselective oxidation of allyl sulfides. Tetrahedron Asymmetry 22:717–721. https://doi.org/10.1016/j.tetasy.2011.04.023

    Article  CAS  Google Scholar 

  40. Wang Y, Wang M, Wang Y, Wang X, Wang L, Sun L (2010) Highly enantioselective sulfoxidation with vanadium catalysts of Schiff bases derived from bromo- and iodo-functionalized hydroxynaphthaldehydes. J Catal 273:177–181. https://doi.org/10.1016/j.jcat.2010.05.013

    Article  CAS  Google Scholar 

  41. Adão P, Kuznetsov ML, Barroso S, Martins AM, Avecilla F, Pessoa JC (2012) Amino alcohol-derived reduced Schiff base VIVO and VV compounds as catalysts for asymmetric sulfoxidation of thioanisole with hydrogen peroxide. Inorg Chem 51:11430–11449. https://doi.org/10.1021/ic301153p

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, Wang M, Wang Y, Wang Y, Sun H, Sun L (2009) Asymmetric oxidation of sulfides with hydrogen peroxide catalyzed by a vanadium complex of a new chiral NOO-ligand. Catal Commun 11:294–297. https://doi.org/10.1016/j.catcom.2009.10.017

    Article  CAS  Google Scholar 

  43. Wu Y, Liu J, Li X, Chan ASC (2009) Vanadium-catalyzed asymmetric oxidation of sulfides using Schiff base ligands derived from ß-amino alcohols with two stereogenic centers. European J Org Chem 2:2607–2610. https://doi.org/10.1002/ejoc.200900289

    Article  CAS  Google Scholar 

  44. Wu Y, Mao F, Meng F, Li X (2011) Enantioselective vanadium-catalyzed oxidation of 1,3-dithianes from aldehydes and ketones using β-amino alcohol derived schiff base ligands. Adv Synth Catal 353:1707–1712. https://doi.org/10.1002/adsc.201000803

    Article  CAS  Google Scholar 

  45. Jeong YC, Ahn DJ, Lee WS, Lee SH, Ahn KH (2011) Synthesis of new chiral ligands based on thiophene derivatives for use in catalytic asymmetric oxidation of sulfides. Bull Korean Chem Soc 32:1063–1066. https://doi.org/10.5012/bkcs.2011.32.3.1063

    Article  CAS  Google Scholar 

  46. Aydin AE (2013) Synthesis of novel β-amino alcohols and their application in the catalytic asymmetric sulfoxidation of sulfides. Tetrahedron Asymmetry 24:444–448. https://doi.org/10.1016/j.tetasy.2013.03.011

    Article  CAS  Google Scholar 

  47. Khomenko TM, Salomatina OV, Kurbakova SY, Il’ina IV, Volcho KP, Komarova NI, Korchagina DV, Salakhutdinov NF, Tolstikov AG (2006) New chiral ligands from myrtenal and caryophyllene for asymmetric oxydation of sulfides catalyzed by metal complexes. Russ J Org Chem 42. https://doi.org/10.1134/s1070428006110091

    Article  CAS  Google Scholar 

  48. Kuchin AV, Ashikhmina EV, Rubtsova SA, Dvornikova IA (2010) Terpene ligands as the basis of catalytic systems for the asymmetric oxidation of phenylphenacyl sulfide. Russ J Bioorganic Chem 36:877–883. https://doi.org/10.1134/S1068162010070150

    Article  CAS  Google Scholar 

  49. Koneva EA, Volcho KP, Korchagina DV, Komarova NI, Kochnev AI, Salakhutdinov NF, Tolstikov AG (2008) New chiral Schiff bases derived from (+)- and (−)-α-pinenes in the metal complex catalyzed asymmetric oxidation of sulfides. Russ Chem Bull 57:108–117. https://doi.org/10.1007/s11172-008-0017-8

    Article  CAS  Google Scholar 

  50. Chuo TH, Boobalan R, Chen C (2016) Camphor-based schiff base of 3-endo-aminoborneol (SBAB): novel ligand for vanadium-catalyzed asymmetric sulfoxidation and subsequent kinetic resolution. ChemistrySelect 1:2174–2180. https://doi.org/10.1002/slct.201600379

    Article  CAS  Google Scholar 

  51. Yin D, Tan R, Li C, Peng Z, Yin D (2011) Preparation of chiral oxovanadium (IV) Schiff base complex functionalized by ionic liquid for enantioselective oxidation of methyl aryl sulfides. Catal Commun 12:1488–1491. https://doi.org/10.1016/j.catcom.2011.06.006

    Article  CAS  Google Scholar 

  52. Lazar A, Sharma P, Singh AP (2013) Chiral VIVO-Sal-Indanol complex over modified SBA-15: an efficient, reusable enantioselective catalyst for asymmetric sulfoxidation reaction. Microporous Mesoporous Mater 170:331–339. https://doi.org/10.1016/j.micromeso.2012.12.014

    Article  CAS  Google Scholar 

  53. Sandel S, Weber SK, Trapp O (2012) Oxidations with bonded salen-catalysts in microcapillaries. Chem Eng Sci 83:171–179. https://doi.org/10.1016/j.ces.2011.10.034

    Article  CAS  Google Scholar 

  54. Shen C, Qiao J, Zhao L, Zheng K, Jin J, Zhang P (2017) An efficient silica supported Chitosan@vanadium catalyst for asymmetric sulfoxidation and its application in the synthesis of esomeprazole. Catal Commun 92:114–118. https://doi.org/10.1016/j.catcom.2017.01.018

    Article  CAS  Google Scholar 

  55. Dai W, Li J, Chen B, Li G, Lv Y, Wang L, Gao S (2013) Asymmetric oxidation catalysis by a porphyrin-inspired manganese complex: highly enantioselective sulfoxidation with a wide substrate scope. Org Lett 15:5658–5661. https://doi.org/10.1021/ol402612x

    Article  CAS  PubMed  Google Scholar 

  56. Dai W, Shang S, Lv Y, Li G, Li C, Gao S (2017) Highly chemoselective and enantioselective catalytic oxidation of heteroaromatic sulfides via high-valent manganese(IV)-oxo cation radical oxidizing intermediates. ACS Catal 7:4890–4895. https://doi.org/10.1021/acscatal.7b00968

    Article  CAS  Google Scholar 

  57. Dai W, Mi Y, Lv Y, Chen B, Li G, Chen G, Gao S (2016) Development of a continuous-flow microreactor for asymmetric sulfoxidation using a biomimetic manganese catalyst. Adv Synth Catal 358:667–671. https://doi.org/10.1002/adsc.201501023

    Article  CAS  Google Scholar 

  58. Zhang Z, Guan F, Huang X, Wang Y, Sun Y (2012) New ternary immobilization of chiral sulfonato-(salen)manganese(III) complex for aqueous asymmetric oxidation reactions. J Mol Catal A: Chem 363–364:343–353. https://doi.org/10.1016/j.molcata.2012.07.010

    Article  CAS  Google Scholar 

  59. Chen X, Peng Y, Han X, Liu Y, Lin X, Cui Y (2017) Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nat Commun 8:1–9. https://doi.org/10.1038/s41467-017-02335-0

    Article  CAS  Google Scholar 

  60. Stingl KA, Weiß KM, Tsogoeva SB (2012) Asymmetric vanadium- and iron-catalyzed oxidations: new mild (R)-modafinil synthesis and formation of epoxides using aqueous H2O2 as a terminal oxidant. Tetrahedron 68:8493–8501. https://doi.org/10.1016/j.tet.2012.07.052

    Article  CAS  Google Scholar 

  61. Bera PK, Kumari P, Abdi SHR, Khan NUH, Kureshy RI, Subramanian PS, Bajaj HC (2014) In situ-generated chiral iron complex as efficient catalyst for enantioselective sulfoxidation using aqueous H2O2 as oxidant. RSC Adv 4:61550–61556. https://doi.org/10.1039/c4ra09237f

    Article  CAS  Google Scholar 

  62. Nishiguchi S, Izumi T, Kouno T, Sukegawa J, Ilies L, Nakamura E (2018) Synthesis of esomeprazole and related proton pump inhibitors through iron-catalyzed enantioselective sulfoxidation. ACS Catal 9738–9743. https://doi.org/10.1021/acscatal.8b02610

    Article  CAS  Google Scholar 

  63. Le Maux P, Simonneaux G (2011) First enantioselective iron-porphyrin-catalyzed sulfide oxidation with aqueous hydrogen peroxide. Chem Commun 47:6957–6959. https://doi.org/10.1039/c1cc11675d

    Article  CAS  Google Scholar 

  64. Srour H, Jalkh J, Le Maux P, Chevance S, Kobeissi M, Simonneaux G (2013) Asymmetric oxidation of sulfides by hydrogen peroxide catalyzed by chiral manganese porphyrins in water/methanol solution. J Mol Catal A: Chem 370:75–79. https://doi.org/10.1016/j.molcata.2012.12.016

    Article  CAS  Google Scholar 

  65. Shen HM, Ji HB (2012) Amino alcohol-modified β-cyclodextrin inducing biomimetic asymmetric oxidation of thioanisole in water. Carbohydr Res 354:49–58. https://doi.org/10.1016/j.carres.2012.03.034

    Article  CAS  PubMed  Google Scholar 

  66. Carrasco CJ, Montilla F, Galindo A (2016) Molybdenum-catalyzed asymmetric sulfoxidation with hydrogen peroxide and subsequent kinetic resolution, using an imidazolium-based dicarboxylate compound as chiral inductor. Catal Commun 84:134–136. https://doi.org/10.1016/j.catcom.2016.06.021

    Article  CAS  Google Scholar 

  67. Carrasco CJ, Montilla F, Galindo A (2018) Molybdenum-catalyzed enantioselective sulfoxidation controlled by a nonclassical hydrogen bond between coordinated chiral imidazolium-based dicarboxylate and peroxido ligands. Molecules 23:1595. https://doi.org/10.3390/molecules23071595

    Article  CAS  PubMed Central  Google Scholar 

  68. Zong L, Wang C, Moeljadi AMP, Ye X, Ganguly R, Li Y, Hirao H, Tan CH (2016) Bisguanidinium dinuclear oxodiperoxomolybdosulfate ion pair-catalyzed enantioselective sulfoxidation. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms13455

    Article  CAS  Google Scholar 

  69. O’Mahony GE, Ford A, Maguire AR (2012) Copper-catalyzed asymmetric oxidation of sulfides. J Org Chem 77:3288–3296. https://doi.org/10.1021/jo2026178

    Article  CAS  PubMed  Google Scholar 

  70. O’Mahony GE, Eccles KS, Morrison RE, Ford A, Lawrence SE, Maguire AR (2013) Investigation of steric and electronic effects in the copper-catalysed asymmetric oxidation of sulfides. Tetrahedron 69:10168–10184. https://doi.org/10.1016/j.tet.2013.08.063

    Article  CAS  Google Scholar 

  71. Tanaka K, Oda S, Shiro M (2008) A novel chiral porous metal-organic framework: asymmetric ring opening reaction of epoxide with amine in the chiral open space. Chem Commun 820–822. https://doi.org/10.1039/b714083e

  72. Tanaka K, Kubo K, Iida K, Otani KI, Murase T, Yanamoto D, Shiro M (2013) Asymmetric catalytic sulfoxidation with H2O2 using chiral copper metal-organic framework crystals. Asian J Org Chem 2:1055–1060. https://doi.org/10.1002/ajoc.201300140

    Article  CAS  Google Scholar 

  73. Wang Y, Li H, Qi W, Yang Y, Yan Y, Li B, Wu L (2012) Supramolecular assembly of chiral polyoxometalate complexes for asymmetric catalytic oxidation of thioethers. J Mater Chem 22:9181–9188. https://doi.org/10.1039/c2jm16398e

    Article  CAS  Google Scholar 

  74. Ye X, Moeljadi AMP, Chin KF, Hirao H, Zong L, Tan CH (2016) Enantioselective sulfoxidation catalyzed by a bisguanidinium diphosphatobisperoxotungstate ion pair. Angew Chemie—Int Ed 55:7101–7105. https://doi.org/10.1002/anie.201601574

    Article  CAS  Google Scholar 

  75. Yamaguchi T, Matsumoto K, Saito B, Katsuki T (2007) Asymmetric oxidation catalysis by a chiral Al (salalen) complex: highly enantioselective oxidation of sulfides with aqueous hydrogen peroxide. Angew Chemie—Int Ed 46:4729–4731. https://doi.org/10.1002/anie.200700792

    Article  CAS  Google Scholar 

  76. Fujisaki J, Matsumoto K, Matsumoto K, Katsuki T (2011) Catalytic asymmetric oxidation of cyclic dithioacetals: Highly diastereo- and enantioselective synthesis of the S-oxides by a chiral aluminum(salalen) complex. J Am Chem Soc 133:56–61. https://doi.org/10.1021/ja106877x

    Article  CAS  PubMed  Google Scholar 

  77. Stingl KA, Tsogoeva SB (2010) Recent advances in sulfoxidation reactions: a metal-free approach. Tetrahedron Asymmetry 21:1055–1074. https://doi.org/10.1016/j.tetasy.2010.05.020

    Article  CAS  Google Scholar 

  78. Liu ZM, Zhao H, Li MQ, Lan YB, Yao QB, Tao JC, Wang XW (2012) Chiral phosphoric acid-catalyzed asymmetric oxidation of aryl alkyl sulfides and aldehyde-derived 1,3-dithianes: using aqueous hydrogen peroxide as the terminal oxidant. Adv Synth Catal 354:1012–1022. https://doi.org/10.1002/adsc.201100810

    Article  CAS  Google Scholar 

  79. Jindal G, Sunoj RB (2014) Axially chiral imidodiphosphoric acid catalyst for asymmetric sulfoxidation reaction: insights on asymmetric induction. Angew Chemie—Int Ed 53:4432–4436. https://doi.org/10.1002/anie.201309532

    Article  CAS  Google Scholar 

  80. Sunoj RB (2016) Transition state models for understanding the origin of chiral induction in asymmetric catalysis. Acc Chem Res 49:1019–1028. https://doi.org/10.1021/acs.accounts.6b00053

    Article  CAS  PubMed  Google Scholar 

  81. Liao S, Čorić I, Wang Q, List B (2012) Activation of H2O2 by chiral confined Brønsted acids: a highly enantioselective catalytic sulfoxidation. J Am Chem Soc 134:10765–10768. https://doi.org/10.1021/ja3035637

    Article  CAS  PubMed  Google Scholar 

  82. Jurok R, Cibulka R, Dvořáková H, Hampl F, Hodačová J (2010) Planar chiral flavinium salts—prospective catalysts for enantioselective sulfoxidation reactions. Eur J Org Chem 5217–5224. https://doi.org/10.1002/ejoc.201000592

    Article  Google Scholar 

  83. Jurok R, Hodačová J, Eigner V, Dvořáková H, Setnička V, Cibulka R (2013) Planar chiral flavinium salts: synthesis and evaluation of the effect of substituents on the catalytic efficiency in enantioselective sulfoxidation reactions. Eur J Org Chem 7724–7738. https://doi.org/10.1002/ejoc.201300847

    Article  CAS  Google Scholar 

  84. Mojr V, Herzig V, Budíšnský M, Cibulka R, Kraus T (2010) Flavin-cyclodextrin conjugates as catalysts of enantioselective sulfoxidations with hydrogen peroxide in aqueous media. Chem Commun 46:7599–7601. https://doi.org/10.1039/c0cc02562c

    Article  CAS  Google Scholar 

  85. Tanaka H, Nishikawa H, Uchida T, Katsuki T (2010) Photopromoted Ru-catalyzed asymmetric aerobic sulfide oxidation and epoxidation using water as a proton transfer mediator. J Am Chem Soc 132:12034–12041. https://doi.org/10.1021/ja104184r

    Article  CAS  PubMed  Google Scholar 

  86. Uchida T, Katsuki T (2013) Green asymmetric oxidation using air as oxidant. J Synth Org Chem Jpn 71:1126–1135. https://doi.org/10.5059/yukigoseikyokaishi.71.1126

    Article  CAS  Google Scholar 

  87. Koya S, Nishioka Y, Mizoguchi H, Uchida T, Katsuki T (2012) Asymmetric epoxidation of conjugated olefins with dioxygen. Angew Chemie—Int Ed 51:8243–8246. https://doi.org/10.1002/anie.201201848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Volcho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volcho, K. (2019). Recent Developments in the Catalytic Asymmetric Sulfoxidation Reactions. In: Bryliakov, K. (eds) Frontiers of Green Catalytic Selective Oxidations. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9751-7_4

Download citation

Publish with us

Policies and ethics