Skip to main content

Linear and Nonlinear EEG-Based Functional Networks in Anxiety Disorders

  • Chapter
  • First Online:
Anxiety Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1191))

Abstract

Electrocortical network dynamics are integral to brain function. Linear and nonlinear connectivity applications enrich neurophysiological investigations into anxiety disorders. Discrete EEG-based connectivity networks are unfolding with some homogeneity for anxiety disorder subtypes. Attenuated delta/theta/beta connectivity networks, pertaining to anterior-posterior nodes, characterize panic disorder. Nonlinear measures suggest reduced connectivity of ACC as an executive neuro-regulator in germane “fear circuitry networks” might be more central than considered. Enhanced network complexity and theta network efficiency at rest define generalized anxiety disorder, with similar tonic hyperexcitability apparent in social anxiety disorder further extending to task-related/state functioning. Dysregulated alpha connectivity and integration of mPFC-ACC/mPFC-PCC relays implicated with attentional flexibility and choice execution/congruence neurocircuitry are observed in trait anxiety. Conversely, state anxiety appears to recruit converging delta and beta connectivity networks as panic, suggesting trait and state anxiety are modulated by discrete neurobiological mechanisms. Furthermore, EEG connectivity dynamics distinguish anxiety from depression, despite prevalent clinical comorbidity. Rethinking mechanisms implicated in the etiology, maintenance, and treatment of anxiety from the perspective of EEG network science across micro- and macroscales serves to shed light and move the field forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eliasmith C, Anderson CH. Neural engineering: computation, representation, and dynamics in neurobiological systems, Computational Neuroscience Series. Cambridge-London: MIT Press; 2004.

    Google Scholar 

  2. Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci. 2017;40(4):208–18.

    Article  CAS  PubMed  Google Scholar 

  3. Schoenberg PLA, Vago DR. Mapping meditative states and stages with electrophysiology: concepts, classifications, and methods. Curr Opin Psychol. 2019;28:211–7.

    Article  PubMed  Google Scholar 

  4. Moran A, Bar-Gad I. Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals. J Neurosci Methods. 2010;186(1):116–29.

    Article  CAS  PubMed  Google Scholar 

  5. Lopes da Silva F. EEG and MEG: relevance to neuroscience. Neuron. 2013;80(5):1112–28.

    Article  CAS  PubMed  Google Scholar 

  6. Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolić D, Singer W. Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci. 2009;3:17. https://doi.org/10.3389/neuro.07.017.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Friston KJ, Büchel C. Functional connectivity: eigenimages and multivariate analyses. In: Statistical parametric mapping: the analysis of functional brain images. 2007. p. 492–507.

    Chapter  Google Scholar 

  8. Greenblatt RE, Pflieger ME, Ossadtchi AE. Connectivity measures applied to human brain electrophysiological data. J Neurosci Methods. 2012;207(1):1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen CC, Henson RN, Stephan KE, Kilner JM, Friston KJ. Forward and backward connections in the brain: a DCM study of functional asymmetries. NeuroImage. 2009;45:453–62.

    Article  CAS  PubMed  Google Scholar 

  10. Friston K. Non-linear coupling and kernels. In: Statistical parametric mapping: the analysis of functional brain images. 2007. p. 522–33.

    Chapter  Google Scholar 

  11. Schoenberg PLA, Speckens AEM. Multi-dimensional modulations of α and γ cortical dynamics following mindfulness-based cognitive therapy in Major Depressive Disorder. Cogn Neurodyn. 2015;9:13–29.

    Article  PubMed  Google Scholar 

  12. Friston K. Functional integration. In: Statistical parametric mapping: the analysis of functional brain images. 2007. p. 471–91.

    Chapter  Google Scholar 

  13. Bastos AM, Schoffelen J-M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci. 2016;9:175. https://doi.org/10.3389/fnsys.2015.00175.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang HE, Bénar CG, Quilichini PP, Friston KJ, Jirsa VK, Bernard C. A systematic framework for functional connectivity measures. Front Neurosci. 2014;8:405. https://doi.org/10.3389/fnins.2014.00405.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8(4):194–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mezeiová K, Paluš M. Comparison of coherence and phase synchronization of the human sleep electroencephalogram. Clin Neurophysiol. 2012;123(9):1821–30.

    Article  PubMed  Google Scholar 

  17. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett. 1996;76(11):1804–7.

    Article  CAS  PubMed  Google Scholar 

  18. Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28(11):1178–93.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Petersen A, Zhao J, Carmichael O, Müller H-G. Quantifying individual brain connectivity with functional principal component analysis for networks. Brain Connect. 2016;6(7):540–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sockeel S, Schwartz D, Pélégrini-Issac M, Benali H. Large-scale functional networks identified from resting-state EEG using spatial ICA. PLoS One. 2016;11(1):e0146845. https://doi.org/10.1371/journal.pone.0146845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alin A, Kurt S, McIntosh AR, Öniz A, Özgӧren M. Partial least squares analysis in electrical brain activity. J Data Sci. 2009;7:99–110.

    Google Scholar 

  22. Astolfi L, Cincotti F, Babiloni C, Carducci F, Basilisco A, Rossini PM, Salinari S, Mattia D, Cerutti S, Ben Dayan D, Ding L, Ni Y, He B, Babiloni F. High-resolution EEG and structural equation modelling: simulations and application to finger tapping data. IEEE Trans Biomed Eng. 2005;52(5):757–68.

    Article  PubMed  Google Scholar 

  23. Babiloni F, Cincotti F, Basilisco A, Maso E, Bufano M, Babiloni C, Carducci F, Rossini P, Cerutti S, Ben Dayan Rubin D. Frontoparietal cortical networks revealed by structural equation modelling and high resolution EEG during a short term memory task. In: Proceedings of the 1st International IEEE EMBS, Conference on Neural Engineering. 2003, March 20–22. p. 79–82.

    Google Scholar 

  24. Kiebel SJ, Garrido MI, Moran R, Chen C-C, Friston KJ. Dynamic causal modeling for EEG and MEG. Hum Brain Mapp. 2009;30:1866–76.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37(3):424–38.

    Article  Google Scholar 

  26. Huang D, Ren A, Shang J, Lei Q, Zhang Y, Yin Z, Li J, von Deneen KM, Huang L. Combining partial directed coherence and graph theory to analyse effective brain newtorks of different mental tasks. Front Hum Neurosci. 2016;10:235. https://doi.org/10.3389/fnhum.2016.00235.

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Vico Fallani F, Richiardi J, Chavez M, Achard S. Graph analysis of functional brain networks: practical issues in translational neuroscience. Philoso Trans R Soc B. 2014;369:20130521.. doi.org/10.1098/rstb.2013.0521

    Article  Google Scholar 

  28. Seth AK, Barrett AB, Barnett L. Granger causality analysis in neuroscience and neuroimaging. J Neurosci. 2015;35(8):3293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maziarz M. A review of the granger-causality fallacy. J Philos Econ. 2014;8(2):86–105.

    Google Scholar 

  30. Cohen JR, D’Esposito M. The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci. 2016;36(48):12083–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev. 2009;10:186–98.

    Article  CAS  Google Scholar 

  32. Xing M, Tadayonnejad R, MacNamara A, Ajilore O, DiGangi J, Phan KL, Leow A, Klumpp H. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder. Neuroimage Clin. 2017;13:24–32.

    Article  PubMed  Google Scholar 

  33. Xing M, Lee H, Morrissey Z, Chung MK, Phan KL, Klumpp H, Leow A, Ajilore O. Altered dynamic electroencephalography connectome phase-space features of emotion regulation in social anxiety. NeuroImage. 2019;186:338–49.

    Article  PubMed  Google Scholar 

  34. Klados MA, Pandria N, Micheloyannis S, Margulies D, Bamidis PD. Math anxiety: brain cortical network changes in anticipation of doing mathematics. Int J Psychophysiol. 2017;122:24–31.

    Article  PubMed  Google Scholar 

  35. Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy – a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci. 2011;30(1):45–67.

    Article  PubMed  Google Scholar 

  36. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Association (APA): Arlington; 2013.

    Google Scholar 

  37. Regier DA, Kuhl EA, Kupfer DJ. The DSM-5: classification and criteria changes. World Psychiatry. 2013;12(2):92–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kent JM, Rauch SL. Neurocircuitry of anxiety disorders. Curr Psychiatry Rep. 2003;5:266–73.

    Article  PubMed  Google Scholar 

  39. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety. Neuropsychopharmacology. 2010;35:169–91.

    Article  PubMed  Google Scholar 

  40. de Carvalho MR, Dias GP, Cosci F, de Melo Neto VL, Bevilaqua MCDN, Gardino PF, Nardi AE. Current findings of fMRI in panic disorder: contributions for the fear neurocircuitry and CBT effects. Expert Rev Neurother. 2014;10(2):291–303.

    Article  Google Scholar 

  41. Gorman JM, Kent JM, Sullivan GM, Coplan JD. Neuroanatomical hypothesis of panic disorder, revised. Am J Psychiatr. 2000;157(4):493–505.

    Article  CAS  PubMed  Google Scholar 

  42. Coplan JD, Lydiard RB. Brain circuits in panic disorder. Biol Psychiatry. 1998;44(12):1264–76.

    Article  CAS  PubMed  Google Scholar 

  43. Hanaoka A, Kikuchi M, Komuro R, Oka H, Kidani T, Ichikawa S. EEG coherence analysis in never-medicated patients with panic disorder. Clin EEG Neurosci. 2005;36(1):42–8.

    Article  PubMed  Google Scholar 

  44. Lopes FL, Oliveira MM, Freire RC, Caldirola D, Perna G, Bellodi L, Valença AM, Nascimento I, Piedade RA, Ribeiro P, Zin WA, Nardi AE. Carbon dioxide-induced panic attacks and quantitative electroencephalogram in panic disorder patients. World J Biol Psychiatry. 2009;11(2–2):357–63.

    Google Scholar 

  45. Clancy KJ, Baisley SK, Albizu A, Kartvelishvili N, Ding M, Li W. Lasting connectivity increase and anxiety reduction via transcranial alternating current stimulation. Soc Cogn Affect Neurosci. 2018;13(12):1305–16.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cersosimo MG, Benarroch EE. Chapter 5: Central control of autonomic function and involvement in neurodegenerative disorders. In: Buijs RM, Swaab DF, editors. Handbook of clinical neurology: autonomic nervous system, Vol. 117(3). 2013. p. 45–57.

    Chapter  Google Scholar 

  47. Stevens FL, Hurley RA, Taber KH. Anterior Cingulate Cortex: unique role in cognition and emotion. J Neuropsychiatr Clin Neurosci. 2011;23(2):120–5.

    Article  Google Scholar 

  48. Drevets WC, Savitz J, Trimble M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 2009;13(8):663–81.

    Article  Google Scholar 

  49. Knyazev GK. Cross-frequency coupling of brain oscillations: an impact of state anxiety. Int J Psychophysiol. 2011;80:236–45.

    Article  PubMed  Google Scholar 

  50. Imperatori C, Farina B, Adenzato M, Valenti EM, Murgia C, Della Marca G, Brunetti R, Fontana E, Ardito RB. Default mode network alterations in individuals with high-trait-anxiety: an EEG functional connectivity study. J Affect Disord. 2019;246:611–8.

    Article  PubMed  Google Scholar 

  51. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Menon V, Uddin LQ. Saliency, switching, attention, and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Terasawa Y, Fukushima H, Umeda S. How does interoceptive awareness interact with the subjective experience of emotion? An fMRI study. Hum Brain Mapp. 2013;34(3):598–612.

    PubMed  Google Scholar 

  54. Kikuchi M, Koenig T, Munesue T, Hanaoka A, Strik W, Dierks T, Koshino Y, Minabe Y. EEG microstate analysis in drug-naïve patients with panic disorder. PLoS One. 2011;6(7):e22912. https://doi.org/10.1371/journal.pone.0022912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wiedemann G, Stevens A, Pauli P, Dengler W. Decreased duration and altered topography of electroencephalographic microstates in patients with panic disorder. Psychiatry Res Neuroimaging. 1998;84:37–48.

    Article  CAS  Google Scholar 

  56. Wang Y, Chai F, Zhang H, Liu X, Xie P, Zheng L, Yang L, Li L, Fang D. Cortical functional activity in patients with generalized anxiety disorder. BMC Psychiatry. 2016;16:217. https://doi.org/10.1186/s12888-016-0917-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chae JH, Jeong J, Peterson BS, Kim DJ, Bahk WM, Jun TY, Kim SY, Kim KS. Dimensional complexity of the EEG in patients with posttraumatic stress disorder. Psychiatry Res. 2004;131(1):79–89.

    Article  PubMed  Google Scholar 

  58. Molle M, Marshall L, Wolf B, Fehm HL, Born J. EEG complexity and performance measures of creative thinking. Psychophysiology. 1999;36:95–104.

    Article  CAS  PubMed  Google Scholar 

  59. Xing M, Tadayonnejad R, MacNamara A, Ajilore O, Luan Phan K, Klumpp H, Leow A. EEG based functional connectivity reflects cognitive load during emotion regulation. In: IEEE 13th International Symposium on Biomedical Imaging (ISBI). 2016. p. 771–4. https://doi.org/10.1109/ISBI.2016.7493380.

  60. Saunders A, Kirk IJ, Waldie KE. Hemispheric coherence in ASD with and without comorbid ADHD and anxiety. Biomed Res Int. 2016. 4267842.

    Google Scholar 

  61. Wheelock MD, Rangaprakash D, Harnett NG, Wood KH, Orem TR, Mrug S, Granger DA, Deshpande G, Knight DC. Psychosocial stress reactivity is associated with decreased whole-brain network efficiency and increased amygdala centrality. Behav Neurosci. 2018;132(6):561–72.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Knyazev GG, Savostyanov AN, Bocharov AV, Rimareva JM. Anxiety, depression, and oscillatory dynamics in a social interaction model. Brain Res. 2016;1644:62–9.

    Article  CAS  PubMed  Google Scholar 

  63. Lackner CI, Marshall WJ, Santesso DL, Dywan J, Wade T, Segalowitz SJ. Adolescent anxiety and aggression can be differentially predicted by electrocortical phase reset variables. Brain Cogn. 2014;89:90–8.

    Article  PubMed  Google Scholar 

  64. Bissonette GB, Powell EM, Roesch MR. Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behav Brain Res. 2013;250:91–101.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tompson S, Chua HF, Kitayama S. Connectivity between mPFC and PCC predicts post-choice attitude change: the self-referential processing hypothesis of choice justification. Hum Brain Mapp. 2016;37(11):3810–20.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reiser EM, Schulter G, Weiss EM, Fink A, Rominger C, Papousek I. Decrease of prefrontal-posterior EEG coherence: loose control during social-emotional stimulation. Brain Cogn. 2012;80:144–54.

    Article  PubMed  Google Scholar 

  67. Knyazev GG, Savostyanov AN, Levin EA. Anxiety and synchrony of alpha oscillations. Int J Psychophysiol. 2005;57:175–80.

    Article  PubMed  Google Scholar 

  68. Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev. 2007;31:377–95.

    Article  PubMed  Google Scholar 

  69. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.

    Article  CAS  PubMed  Google Scholar 

  70. De Vera L, González J, Rial RV. Reptilian waking EEG: slow waves, spindles and evoked potentials. Electroencephalogr Clin Neurophysiol. 1994;90:298–303.

    Article  PubMed  Google Scholar 

  71. Lopes FL, Azevedo TM, Imbiriba LA, Freire RC, Valença AM, Caldirola D, Perna G, Volchan E, Nardi AE. Freezing reaction in panic disorder patients associated with anticipatory anxiety. Depress Anxiety. 2009;26(10):917–21.

    Article  PubMed  Google Scholar 

  72. Porges SW. The polyvagal theory: phylogenetic contributions to social behaviour. Physiol Behav. 2003;79:503–13.

    Article  CAS  PubMed  Google Scholar 

  73. Knyazev GG, Slobodskaya HR. Personality trait of behavioral inhibition is associated with oscillatory systems reciprocal relationships. Int J Psychophysiol. 2003;48(3):247–61.

    Article  PubMed  Google Scholar 

  74. Harmony T. The functional significance of delta oscillations in cognitive processing. Front Integr Neurosci. 2013;7:83. https://doi.org/10.3389/fnint.2013.00083.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kirov R, Weiss C, Siebner HR, Born J, Marshall L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. PNAS. 2009;106(36):15460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hasselmo ME, McClelland JL. Neural models of memory. Curr Opin Neurobiol. 1999;9(2):184–8.

    Article  CAS  PubMed  Google Scholar 

  77. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53:63–88.

    Article  PubMed  Google Scholar 

  78. Pfurtscheller G, Andrew C. Event-related changes of band power and coherence: methodology and interpretation. J Clin Neurophysiol. 1999;16:512–9.

    Article  CAS  PubMed  Google Scholar 

  79. Palva S, Palva JM. New vistas for α-frequency band oscillations. Trends Neurosci. 2007;30:150–8.

    Article  CAS  PubMed  Google Scholar 

  80. Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, Dɫotko P, Levi R, Hess K, Markam H. Cliques of neurons bound into cavities provide a missing link between structure and function. Front Comput Neurosci. 2017;11:48. https://doi.org/10.3389/fncom.2017.00048.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shi W, Yeh C-H, Hong Y. Cross-frequency transfer entropy characterize coupling of interacting nonlinear oscillators in complex systems. IEEE Trans Biomed Eng. 2019;66(2):521–9.

    Article  PubMed  Google Scholar 

  82. Novelli L, Wollstadt P, Mediano P, Wibral M, Lizier JT. Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing. Accessed via Cornell University Open Source Quantitative Biology>Neurons and Cognition 2019. arXiv:1902.06828 [q-bio.NC].

    Google Scholar 

  83. Jin MJ, Kim JS, Kim S, Hyun MH, Lee S-H. An integrated model of emotional problems, beta power of electroencephalography, and low frequency of heart rate variability after childhood trauma in a non-clinical sample: a path analysis study. Front Psych. 2018;8:314. https://doi.org/10.3389/fpsyt.2017.00314.

    Article  Google Scholar 

  84. Tulay EE, Metin B, Tarhan N, Arikan MK. Multimodal neuroimaging: basic concepts and classifications of neuropsychiatric diseases. Clin EEG Neurosci. 2019;50(1):20–33.

    Article  PubMed  Google Scholar 

  85. Rabinovich MI, Muezzinoglu MK, Strigo I, Bystritsky A. Dynamical principles of emotion-cognition interaction: mathematical images of mental disorders. PLoS One. 2010;5(9):e12547. https://doi.org/10.1371/journal.pone.0012547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee D, Kang D-H, Ha N-H, Oh C-Y, Lee U, Kang SW. Effects of an online mind-body training program on the default mode network: an EEG functional connectivity study. Sci Rep. 2018;8:16935. https://doi.org/10.1038/s41598-018-34947-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Song P, Lin H, Li S, Wang L, Liu J, Li N, Wang Y. Repetitive transcranial magnetic stimulation (rTMS) modulates time-varying electroencephalography (EEG) network in primary insomnia patients: a TMS-EEG study. Sleep Med. 2019; https://doi.org/10.1016/j.sleep.2019.01.007.

    Article  PubMed  Google Scholar 

  88. Xing M, GadElkarim J, Ajilore O, Wolfson O, Forbes A, Phan KL, Klumpp H, Leow A. Thought chart: tracking the thought with manifold learning during emotion regulation. Brain Inform. 2018;5:7. https://doi.org/10.1186/s40708-018-0085-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poppy L. A. Schoenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schoenberg, P.L.A. (2020). Linear and Nonlinear EEG-Based Functional Networks in Anxiety Disorders. In: Kim, YK. (eds) Anxiety Disorders. Advances in Experimental Medicine and Biology, vol 1191. Springer, Singapore. https://doi.org/10.1007/978-981-32-9705-0_3

Download citation

Publish with us

Policies and ethics