Skip to main content

The Role of Hormonal and Reproductive Status in the Treatment of Anxiety Disorders in Women

  • Chapter
  • First Online:
Anxiety Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1191))

Abstract

Exposure therapy, a key treatment for anxiety disorders, can be modelled in the laboratory using Pavlovian fear extinction. Understanding the hormonal and neurobiological mechanisms underlying fear extinction in females, who are twice more likely than males to present with anxiety disorders, may aid in optimising exposure therapy outcomes in this population. This chapter will begin by discussing the role of the sex hormones, estradiol and progesterone, in fear extinction in females. We will also propose potential mechanisms by which these hormones may modulate fear extinction. The second half of this chapter will discuss the long-term hormonal, neurological and behavioural changes that arise from pregnancy and motherhood and how these changes may alter the features of fear extinction in females. Finally, we will discuss implications of this research for the treatment of anxiety disorders in women with and without prior reproductive experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17(3):327–35.

    Google Scholar 

  2. McLean CP, Asnaani A, Litz BT, Hofmann SG. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res. 2011;45(8):1027–35.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bekker MH, van Mens-Verhulst J. Anxiety disorders: sex differences in prevalence, degree, and background, but gender-neutral treatment. Gend Med. 2007;4:S178–S93.

    Article  PubMed  Google Scholar 

  4. Anderson JC, Williams S, McGee R, Silva PA. DSM-III disorders in preadolescent children: prevalence in a large sample from the general population. Arch Gen Psychiatry. 1987;44(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  5. Faravelli C, Alessandra Scarpato M, Castellini G, Lo Sauro C. Gender differences in depression and anxiety: the role of age. Psychiatry Res. 2013;210(3):1301–3.

    Article  PubMed  Google Scholar 

  6. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9(12):947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewinsohn PM, Gotlib IH, Lewinsohn M, Seeley JR, Allen NB. Gender differences in anxiety disorders and anxiety symptoms in adolescents. J Abnorm Psychol. 1998;107(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  8. Patton G, Hibbert M, Carlin J, Shao Q, Rosier M, Caust J, et al. Menarche and the onset of depression and anxiety in Victoria, Australia. J Epidemiol Community Health. 1996;50(6):661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodman JH, Chenausky KL, Freeman MP. Anxiety disorders during pregnancy: a systematic review. J Clin Psychiatry. 2014;75(10):e1153–84.

    Article  PubMed  Google Scholar 

  10. Ross LE, McLean LM. Anxiety disorders during pregnancy and the postpartum period: a systematic review. J Clin Psychiatry. 2006;67(8):1285–98.

    Article  PubMed  Google Scholar 

  11. Vythilingum B. Anxiety disorders in pregnancy. Curr Psychiatry Rep. 2008;10(4):331–5.

    Article  PubMed  Google Scholar 

  12. Hofmann SG, Smits JA. Cognitive-behavioral therapy for adult anxiety disorders: a meta-analysis of randomized placebo-controlled trials. J Clin Psychiatry. 2008;69(4):621–32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stewart RE, Chambless DL. Cognitive–behavioral therapy for adult anxiety disorders in clinical practice: a meta-analysis of effectiveness studies. J Consult Clin Psychol. 2009;77(4):595–606.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Loerinc AG, Meuret AE, Twohig MP, Rosenfield D, Bluett EJ, Craske MG. Response rates for CBT for anxiety disorders: need for standardized criteria. Clin Psychol Rev. 2015;42:72–82.

    Article  PubMed  Google Scholar 

  15. McNally RJ. Mechanisms of exposure therapy: how neuroscience can improve psychological treatments for anxiety disorders. Clin Psychol Rev. 2007;27(6):750–9.

    Article  PubMed  Google Scholar 

  16. Milad MR, Igoe SA, Lebron-Milad K, Novales JE. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience. 2009;164(3):887–95.

    Article  CAS  PubMed  Google Scholar 

  17. Fanselow MS. Conditional and unconditional components of post-shock freezing. Pavlov J Biol Sci. 1980;15(4):177–82.

    CAS  PubMed  Google Scholar 

  18. Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, et al. Don’t fear ‘fear conditioning’: methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev. 2017;77:247–85.

    Article  PubMed  Google Scholar 

  19. Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron. 2002;36:567–84.

    Article  CAS  PubMed  Google Scholar 

  20. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72.

    Article  PubMed  Google Scholar 

  21. Duits P, Cath DC, Lissek S, Hox JJ, Hamm AO, Engelhard IM, et al. Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depress Anxiety. 2015;32(4):239–53.

    Article  PubMed  Google Scholar 

  22. Michael T, Blechert J, Vriends N, Margraf J, Wilhelm FH. Fear conditioning in panic disorder: enhanced resistance to extinction. J Abnorm Psychol. 2007;116(3):612–7.

    Article  PubMed  Google Scholar 

  23. VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem. 2014;113:3–18.

    Article  PubMed  Google Scholar 

  24. Hermann C, Ziegler S, Birbaumer N, Flor H. Psychophysiological and subjective indicators of aversive pavlovian conditioning in generalized social phobia. Biol Psychiatry. 2002;52(4):328–37.

    Article  PubMed  Google Scholar 

  25. Hartley CA, Phelps EA. Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology. 2010;35(1):136–46.

    Article  PubMed  Google Scholar 

  26. Jovanovic T, Kazama A, Bachevalier J, Davis M. Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology. 2012;62(2):695–704.

    Article  CAS  PubMed  Google Scholar 

  27. Graham BM, Milad MR. The study of fear extinction: implications for anxiety disorders. Am J Psychiatry. 2011;168(12):1255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler K. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther. 2015;149:150–90.

    Article  CAS  PubMed  Google Scholar 

  29. Farage MA, Osborn TW, MacLean AB. Cognitive, sensory, and emotional changes associated with the menstrual cycle: a review. Arch Gynecol Obstet. 2008;278(4):299–307.

    Article  PubMed  Google Scholar 

  30. Goldman JM, Murr AS, Cooper RL. The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res B Dev Reprod Toxicol. 2007;80(2):84–97.

    Article  CAS  PubMed  Google Scholar 

  31. Rey CD, Lipps J, Shansky RM. Dopamine d1 receptor activation rescues extinction impairments in low-estrogen female rats and induces cortical layer-specific activation changes in prefrontal–amygdala circuits. Neuropsychopharmacology. 2014;39(5):1282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gruene TM, Roberts E, Thomas V, Ronzio A, Shansky RM. Sex-specific neuroanatomical correlates of fear expression in prefrontal-amygdala circuits. Biol Psychiatry. 2015;78(3):186–93.

    Article  PubMed  Google Scholar 

  33. Milligan-Saville JS, Graham BM. Mothers do it differently: reproductive experience alters fear extinction in female rats and women. Transl Psychiatry. 2016;6(10):e928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Graham BM, Daher M. Estradiol and progesterone have opposing roles in the regulation of fear extinction in female rats. Neuropsychopharmacology. 2016;41(3):774–80.

    Article  CAS  PubMed  Google Scholar 

  35. Graham BM, Scott E. Effects of systemic estradiol on fear extinction in female rats are dependent on interactions between dose, estrous phase, and endogenous estradiol levels. Horm Behav. 2018;97:67–74.

    Article  CAS  PubMed  Google Scholar 

  36. Chang YJ, Yang CH, Liang YC, Yeh CM, Huang CC, Hsu KS. Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor β. Hippocampus. 2009;19(11):1142–50.

    Article  CAS  PubMed  Google Scholar 

  37. Maeng LY, Cover KK, Taha MB, Landau AJ, Milad MR, Lebron-Milad K. Estradiol shifts interactions between the infralimbic cortex and central amygdala to enhance fear extinction memory in female rats. J Neurosci Res. 2017;95(1–2):163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeidan MA, Igoe SA, Linnman C, Vitalo A, Levine JB, Klibanski A, et al. Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biol Psychiatry. 2011;70(10):920–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graham BM, Scott E. Estradiol-induced enhancement of fear extinction in female rats: the role of NMDA receptor activation. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:1–9.

    Article  CAS  PubMed  Google Scholar 

  40. Graham BM, Milad MR. Blockade of estrogen by hormonal contraceptives impairs fear extinction in female rats and women. Biol Psychiatry. 2013;73(4):371–8.

    Article  CAS  PubMed  Google Scholar 

  41. Li S, Graham BM. Estradiol is associated with altered cognitive and physiological responses during fear conditioning and extinction in healthy and spider phobic women. Behav Neurosci. 2016;130(6):614–23.

    Article  CAS  PubMed  Google Scholar 

  42. Milad MR, Zeidan MA, Contero A, Pitman RK, Klibanski A, Rauch SL, et al. The influence of gonadal hormones on conditioned fear extinction in healthy humans. Neuroscience. 2010;168(3):652–8.

    Article  CAS  PubMed  Google Scholar 

  43. Glover EM, Jovanovic T, Mercer KB, Kerley K, Bradley B, Ressler KJ, et al. Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder. Biol Psychiatry. 2012;72(1):19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wegerer M, Kerschbaum H, Blechert J, Wilhelm FH. Low levels of estradiol are associated with elevated conditioned responding during fear extinction and with intrusive memories in daily life. Neurobiol Learn Mem. 2014;116:145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Antov MI, Stockhorst U. Stress exposure prior to fear acquisition interacts with estradiol status to alter recall of fear extinction in humans. Psychoneuroendocrinology. 2014;49:106–18.

    Article  CAS  PubMed  Google Scholar 

  46. Pineles SL, Nillni YI, King MW, Patton SC, Bauer MR, Mostoufi SM, et al. Extinction retention and the menstrual cycle: different associations for women with posttraumatic stress disorder. J Abnorm Psychol. 2016;125(3):349–55.

    Article  PubMed  Google Scholar 

  47. Butcher R, Collins W, Fugo N. Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17β throughout the 4-day estrous cycle of the rat. Endocrinology. 1974;94(6):1704–8.

    Article  CAS  PubMed  Google Scholar 

  48. Reed BG, Carr BR. The normal menstrual cycle and the control of ovulation. In: de Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al. Endotext [Internet]. South Darmouth, MA: MDText. com, Inc.; 2000. [cited 2019 Mar 5]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279054/

  49. White EC, Graham BM. Estradiol levels in women predict skin conductance response but not valence and expectancy ratings in conditioned fear extinction. Neurobiol Learn Mem. 2016;134(Pt B):339–48.

    Article  CAS  PubMed  Google Scholar 

  50. Petitti DB. Combination estrogen–progestin oral contraceptives. N Engl J Med. 2003;349(15):1443–50.

    Article  CAS  PubMed  Google Scholar 

  51. Fleischman DS, Navarrete CD, Fessler DMT. Oral contraceptives suppress ovarian hormone production. Psychol Sci. 2010;21(5):750–2.

    Article  PubMed  Google Scholar 

  52. Mishell DR, Thorneycroft IH, Nakamura RM, Nagata Y, Stone SC. Serum estradiol in women ingesting combination oral contraceptive steroids. Am J Obstet Gynecol. 1972;114(7):923–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lonsdorf TB, Haaker J, Schümann D, Sommer T, Bayer J, Brassen S, et al. Sex differences in conditioned stimulus discrimination during context-dependent fear learning and its retrieval in humans: the role of biological sex, contraceptives and menstrual cycle phases. J Psychiatry Neurosci. 2015;40(6):368–75.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Graham BM, Li SH, Black MJ, Öst L-G. The association between estradiol levels, hormonal contraceptive use, and responsiveness to one-session-treatment for spider phobia in women. Psychoneuroendocrinology. 2018;90:134–40.

    Article  CAS  PubMed  Google Scholar 

  55. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  56. Hwang MJ, Zsido RG, Song H, Pace-Schott EF, Miller KK, Lebron-Milad K, et al. Contribution of estradiol levels and hormonal contraceptives to sex differences within the fear network during fear conditioning and extinction. BMC Psychiatry. 2015;15:295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62(5):446–54.

    Article  PubMed  Google Scholar 

  58. Blume SR, Freedberg M, Vantrease JE, Chan R, Padival M, Record MJ, et al. Sex-and estrus-dependent differences in rat basolateral amygdala. J Neurosci. 2017;37(44):10567–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16(6):317–31.

    Article  CAS  PubMed  Google Scholar 

  60. Myers KM, Davis M. Mechanisms of fear extinction. Mol Psychiatry. 2007;12(2):120–50.

    Article  CAS  PubMed  Google Scholar 

  61. Sotres-Bayon F, Bush DE, LeDoux JE. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology. 2007;32(9):1929–40.

    Article  CAS  PubMed  Google Scholar 

  62. Baker JD, Azorlosa JL. The NMDA antagonist MK-801 blocks the extinction of Pavlovian fear conditioning. Behav Neurosci. 1996;110(3):618–20.

    Article  CAS  PubMed  Google Scholar 

  63. Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron. 2007;53(6):871–80.

    Article  CAS  PubMed  Google Scholar 

  64. Liu JL, Li M, Dang XR, Wang ZH, Rao ZR, Wu SX, et al. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model. PLoS One. 2009;4(10):e7548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kim JH, Richardson R. Extinction in preweanling rats does not involve NMDA receptors. Neurobiol Learn Mem. 2010;94(2):176–82.

    Article  CAS  PubMed  Google Scholar 

  66. Ledgerwood L, Richardson R, Cranney J. Effects of D-cycloserine on extinction of conditioned freezing. Behav Neurosci. 2003;117(2):341–9.

    Article  CAS  PubMed  Google Scholar 

  67. Walker DL, Ressler KJ, Lu K-T, Davis M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci. 2002;22(6):2343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang S, Graham BM. Reproductive experience alters the involvement of N-methyl-D-aspartate receptors in fear extinction, but not fear conditioning, in female Sprague Dawley rats. Psychopharmacology (Berl). 2019;236(1):251–64.

    Article  CAS  Google Scholar 

  69. Bi R, Foy MR, Vouimba R-M, Thompson RF, Baudry M. Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proc Natl Acad Sci U S A. 2001;98(23):13391–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Foy M, Xu J, Xie X, Brinton R, Thompson R, Berger T. 17β-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J Neurophysiol. 1999;81(2):925–9.

    Article  CAS  PubMed  Google Scholar 

  71. Galvin C, Ninan I. Regulation of the mouse medial prefrontal cortical synapses by endogenous estradiol. Neuropsychopharmacology. 2014;39(9):2086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weiland NG. Estradiol selectively regulates agonist binding sites on the N-methyl-D-aspartate receptor complex in the CA1 region of the hippocampus. Endocrinology. 1992;131(2):662–8.

    CAS  PubMed  Google Scholar 

  73. Woolley CS, Weiland NG, McEwen BS, Schwartzkroin PA. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci. 1997;17(5):1848–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smith CC, McMahon LL. Estrogen-induced increase in the magnitude of long-term potentiation occurs only when the ratio of NMDA transmission to AMPA transmission is increased. J Neurosci. 2005;25(34):7780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313(5790):1093–7.

    Article  CAS  PubMed  Google Scholar 

  76. Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4(6):a005710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lewis MC, Kerr KM, Orr PT, Frick KM. Estradiol-induced enhancement of object memory consolidation involves NMDA receptors and protein kinase A in the dorsal hippocampus of female C57BL/6 mice. Behav Neurosci. 2008;122(3):716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vedder LC, Smith CC, Flannigan AE, McMahon LL. Estradiol-induced increase in novel object recognition requires hippocampal NR2B-containing NMDA receptors. Hippocampus. 2013;23(1):108–15.

    Article  CAS  PubMed  Google Scholar 

  79. Segal M. Dendritic spines and long-term plasticity. Nat Rev Neurosci. 2005;6(4):277–84.

    Article  CAS  PubMed  Google Scholar 

  80. Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci. 1992;12(7):2549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Woolley CS, Gould E, Frankfurt M, McEwen BS. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci. 1990;10(12):4035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kato A, Hojo Y, Higo S, Komatsuzaki Y, Murakami G, Yoshino H, et al. Female hippocampal estrogens have a significant correlation with cyclic fluctuation of hippocampal spines. Front Neural Circuits. 2013;7:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wallace M, Luine VN, Arellanos A, Frankfurt M. Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Res. 2006;1126(1):176–82.

    Article  CAS  PubMed  Google Scholar 

  84. Gould E, Woolley CS, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci. 1990;10(4):1286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith CC, Vedder LC, Nelson AR, Bredemann TM, McMahon LL. Duration of estrogen deprivation, not chronological age, prevents estrogen’s ability to enhance hippocampal synaptic physiology. Proc Natl Acad Sci U S A. 2010;107(45):19543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Velázquez-Zamora DA, González-Tapia D, González-Ramírez MM, Flores-Soto ME, Vázquez-Valls E, Cervantes M, et al. Plastic changes in dendritic spines of hippocampal CA1 pyramidal neurons from ovariectomized rats after estradiol treatment. Brain Res. 2012;1470:1–10.

    Article  PubMed  CAS  Google Scholar 

  87. de Castilhos J, Forti CD, Achaval M, Rasia-Filho AA. Dendritic spine density of posterodorsal medial amygdala neurons can be affected by gonadectomy and sex steroid manipulations in adult rats: a Golgi study. Brain Res. 2008;1240:73–81.

    Article  CAS  PubMed  Google Scholar 

  88. Hao J, Rapp PR, Leffler AE, Leffler SR, Janssen WG, Lou W, et al. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J Neurosci. 2006;26(9):2571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Inagaki T, Frankfurt M, Luine V. Estrogen-induced memory enhancements are blocked by acute bisphenol A in adult female rats: role of dendritic spines. Endocrinology. 2012;153(7):3357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Khan MM, Dhandapani KM, Zhang QG, Brann DW. Estrogen regulation of spine density and excitatory synapses in rat prefrontal and somatosensory cerebral cortex. Steroids. 2013;78(6):614–23.

    Article  CAS  PubMed  Google Scholar 

  91. Lai CSW, Franke TF, Gan W-B. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature. 2012;483(7387):87–91.

    Article  CAS  PubMed  Google Scholar 

  92. Woolley CS, McEwen BS. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol. 1993;336(2):293–306.

    Article  CAS  PubMed  Google Scholar 

  93. Woolley CS, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci. 1994;14(12):7680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Monte LM, Ellis R. Fertility of women in the United States, 2012. Washington, DC: U.S. Census Bureau; 2014.

    Google Scholar 

  95. Pawluski JL, Lonstein JS, Fleming AS. The neurobiology of postpartum anxiety and depression. Trends Neurosci. 2017;40(2):106–20.

    Article  CAS  PubMed  Google Scholar 

  96. Brett M, Baxendale S. Motherhood and memory: a review. Psychoneuroendocrinology. 2001;26(4):339–62.

    Article  CAS  PubMed  Google Scholar 

  97. Hendrick V, Altshuler LL, Suri R. Hormonal changes in the postpartum and implications for postpartum depression. Psychosomatics. 1998;39(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  98. Bridges RS, Byrnes EM. Reproductive experience reduces circulating 17beta-estradiol and prolactin levels during proestrus and alters estrogen sensitivity in female rats. Endocrinology. 2006;147(5):2575–82.

    Article  CAS  PubMed  Google Scholar 

  99. Bernstein L, Pike MC, Ross RK, Judd HL, Brown JB, Henderson BE. Estrogen and sex hormone-binding globulin levels in nulliparous and parous women. J Natl Cancer Inst. 1985;74(4):741–5.

    CAS  PubMed  Google Scholar 

  100. Prevost M, Zelkowitz P, Tulandi T, Hayton B, Feeley N, Carter CS, et al. Oxytocin in pregnancy and the postpartum: relations to labor and its management. Front Public Health. 2014;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Duthie L, Reynolds RM. Changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy and postpartum: influences on maternal and fetal outcomes. Neuroendocrinology. 2013;98(2):106–15.

    Article  CAS  PubMed  Google Scholar 

  102. Toth I, Neumann ID, Slattery DA. Central administration of oxytocin receptor ligands affects cued fear extinction in rats and mice in a timepoint-dependent manner. Psychopharmacology (Berl). 2012;223(2):149–58.

    Article  CAS  Google Scholar 

  103. Acheson D, Feifel D, de Wilde S, Mckinney R, Lohr J, Risbrough V. The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. Psychopharmacology (Berl). 2013;229(1):199–208.

    Article  CAS  Google Scholar 

  104. Yang Y-L, Chao P-K, Lu K-T. Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmacology. 2006;31(5):912–24.

    Article  CAS  PubMed  Google Scholar 

  105. Dominique J-F, Bentz D, Michael T, Bolt OC, Wiederhold BK, Margraf J, et al. Glucocorticoids enhance extinction-based psychotherapy. Proc Natl Acad Sci U S A. 2011;108(16):6621–5.

    Article  Google Scholar 

  106. Kinsley CH, Lambert KG. Reproduction-induced neuroplasticity: natural behavioural and neuronal alterations associated with the production and care of offspring. J Neuroendocrinol. 2008;20(4):515–25.

    Article  CAS  PubMed  Google Scholar 

  107. Lemaire V, Billard JM, Dutar P, George O, Piazza PV, Epelbaum J, et al. Motherhood-induced memory improvement persists across lifespan in rats but is abolished by a gestational stress. Eur J Neurosci. 2006;23(12):3368–74.

    Article  CAS  PubMed  Google Scholar 

  108. Tomizawa K, Iga N, Lu YF, Moriwaki A, Matsushita M, Li ST, et al. Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat Neurosci. 2003;6(4):384–90.

    Article  CAS  PubMed  Google Scholar 

  109. Pawluski JL, Galea LAM. Hippocampal morphology is differentially affected by reproductive experience in the mother. J Neurobiol. 2006;66(1):71–81.

    Article  PubMed  Google Scholar 

  110. Kinsley CH, Trainer R, Stafisso-Sandoz G, Quadros P, Marcus LK, Hearon C, et al. Motherhood and the hormones of pregnancy modify concentrations of hippocampal neuronal dendritic spines. Horm Behav. 2006;49(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  111. Leuner B, Gould E. Dendritic growth in medial prefrontal cortex and cognitive flexibility are enhanced during the postpartum period. J Neurosci. 2010;30(40):13499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rasia-Filho AA, Fabian C, Rigoti KM, Achaval M. Influence of sex, estrous cycle and motherhood on dendritic spine density in the rat medial amygdala revealed by the Golgi method. Neuroscience. 2004;126(4):839–47.

    Article  CAS  PubMed  Google Scholar 

  113. Byrnes EM, Babb JA, Bridges RS. Differential expression of oestrogen receptor alpha following reproductive experience in young and middle-aged female rats. J Neuroendocrinol. 2009;21(6):550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hussain D, Hoehne A, Woodside B, Brake WG. Reproductive experience modifies the effects of estradiol on learning and memory bias in female rats. Horm Behav. 2013;63(3):418–23.

    Article  CAS  PubMed  Google Scholar 

  115. Barha CK, Galea LAM. Motherhood alters the cellular response to estrogens in the hippocampus later in life. Neurobiol Aging. 2011;32(11):2091–5.

    Article  CAS  PubMed  Google Scholar 

  116. Byrnes EM, Casey K, Bridges RS. Reproductive experience modifies the effects of estrogen receptor alpha activity on anxiety-like behavior and corticotropin releasing hormone mRNA expression. Horm Behav. 2012;61(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  117. Macbeth AH, Luine VN. Changes in anxiety and cognition due to reproductive experience: a review of data from rodent and human mothers. Neurosci Biobehav Rev. 2010;34(3):452–67.

    Article  PubMed  Google Scholar 

  118. Love G, Torrey N, McNamara I, Morgan M, Banks M, Hester NW, et al. Maternal experience produces long-lasting behavioral modifications in the rat. Behav Neurosci. 2005;119(4):1084–96.

    Article  PubMed  Google Scholar 

  119. Gatewood JD, Morgan MD, Eaton M, McNamara IM, Stevens LF, Macbeth AH, et al. Motherhood mitigates aging-related decrements in learning and memory and positively affects brain aging in the rat. Brain Res Bull. 2005;66(2):91–8.

    Article  PubMed  Google Scholar 

  120. Kinsley CH, Madonia L, Gifford GW, Tureski K, Griffin GR, Lowry C, et al. Motherhood improves learning and memory. Nature. 1999;402(6758):137–8.

    Article  CAS  PubMed  Google Scholar 

  121. Broadbent NJ, Gaskin S, Squire LR, Clark RE. Object recognition memory and the rodent hippocampus. Learn Mem. 2010;17(1):5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Paris JJ, Frye CA. Estrous cycle, pregnancy, and parity enhance performance of rats in object recognition or object placement tasks. Reproduction. 2008;136(1):105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Macbeth AH, Scharfman HE, MacLusky NJ, Gautreaux C, Luine VN. Effects of multiparity on recognition memory, monoaminergic neurotransmitters, and brain-derived neurotrophic factor (BDNF). Horm Behav. 2008;54(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  124. Byrnes EM, Bridges RS. Reproductive experience alters anxiety-like behavior in the female rat. Horm Behav. 2006;50(1):70–6.

    Article  PubMed  Google Scholar 

  125. Wartella J, Amory E, Macbeth A, McNamara I, Stevens L, Lambert KG, et al. Single or multiple reproductive experiences attenuate neurobehavioral stress and fear responses in the female rat. Physiol Behav. 2003;79(3):373–81.

    Article  CAS  PubMed  Google Scholar 

  126. Pereira M, Uriarte N, Agrati D, Zuluaga M, Ferreira A. Motivational aspects of maternal anxiolysis in lactating rats. Psychopharmacology (Berl). 2005;180(2):241–8.

    Article  CAS  Google Scholar 

  127. Scanlan VF, Byrnes EM, Bridges RS. Reproductive experience and activation of maternal memory. Behav Neurosci. 2006;120(3):676–86.

    Article  PubMed  Google Scholar 

  128. Leuner B, Shors TJ. Learning during motherhood: a resistance to stress. Horm Behav. 2006;50(1):38–51.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Maeng LY, Shors TJ. Once a mother, always a mother: maternal experience protects females from the negative effects of stress on learning. Behav Neurosci. 2012;126(1):137–41.

    Article  PubMed  Google Scholar 

  130. Rima BN, Bardi M, Friedenberg JM, Christon LM, Karelina KE, Lambert KG, et al. Reproductive experience and the response of female Sprague–Dawley rats to fear and stress. Comp Med. 2009;59(5):437–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Graham BM. Postnatal stress is associated with impaired fear conditioning and extinction, and heightened hippocampal fibroblast growth factor 2, in mother rats. Horm Behav. 2018;105:110–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, S., Graham, B.M. (2020). The Role of Hormonal and Reproductive Status in the Treatment of Anxiety Disorders in Women. In: Kim, YK. (eds) Anxiety Disorders. Advances in Experimental Medicine and Biology, vol 1191. Springer, Singapore. https://doi.org/10.1007/978-981-32-9705-0_26

Download citation

Publish with us

Policies and ethics